# DAYANANDA SAGAR UNIVERSITY

SHAVIGE MALLESHWARA HILLS, KUMARASWAMY LAYOUT BENGALURU – 560 111, KARNATAKA.

# SCHOOL OF BASIC & APPLIED SCIENCES



# SCHEME & SYLLABUS FOR BACHELOR OF SCIENCE (B.Sc.) – 2020

BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS (BBG)

(With effect from 2020 - 21)

# I SEM - BBG

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COURSE   |                                  | CR | SC | HEM | IE OF | TEACH | IING | PRI | E REQUISITE    |
|----|-----------------|----------|----------------------------------|----|----|-----|-------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | CODE     | COURSE TITLE                     |    | L  | Т   | P     | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BT1101 | FUNDAMENTALS OF CELL BIOLOGY     | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 2  | 111             | 20BC1101 | BASIC BIOCHEMISTRY               | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 3  | 111             | 20GN1101 | BASIC GENETICS                   | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 4  | 111             | 20BS1101 | BASIC CHEMISTRY                  | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 5  | 111             | 20BT1171 | TECHNIQUES IN CELL BIOLOGY - LAB | CR | -  | -   | 4     | -     | 2    | *   | ***            |
| 6  | 111             | 20BC1171 | BASIC BIOCHEMISTRY - LAB         | CR | -  | -   | 4     | -     | 2    | *   | ***            |
| 7  | 111             | 20GN1171 | BASIC GENETICS - LAB             | CR | -  | -   | 4     | -     | 2    | *   | ***            |
| 8  | 111             | 20BS1102 | OMMUNICATIVE ENGLISH (           |    | 2  | -   | -     | -     | 2    | *   | ***            |
|    |                 |          |                                  |    | 18 | -   | 12    | -     | 24   |     |                |

# II SEM - BBG

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COURSE   |                                                   | CR | SC | HEM | IE OF | TEACH | IING | PRI | E REQUISITE    |
|----|-----------------|----------|---------------------------------------------------|----|----|-----|-------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | CODE     | COURSE TITLE                                      |    | L  | Т   | P     | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BT1201 | PRINCIPLES OF IMMUNOLOGY                          | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 2  | 111             | 20BC1201 | BIO ANALYTICAL TECHNIQUES                         | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 3  | 111             | 20GN1201 | FUNDAMENTALS OF CYTOGENETICS                      | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 4  | 111             | 20BS1201 | BIOINFORMATICS AND BIOSTATISTICS                  | CR | 4  | -   | -     | -     | 4    | *   | ***            |
| 5  | 111             | 20BT1271 | IMMUNO-TECHNIQUES – LAB                           | CR | -  | -   | 4     | -     | 2    | *   | ***            |
| 6  | 111             | 20BC1271 | BIO ANALYTICAL SEPARATIONS - LAB                  | CR | -  | -   | 4     | -     | 2    | *   | ***            |
| 7  | 111             | 20GN1271 | FUNDAMENTALS OF CYTOGENETICS LAB                  | CR | ı  | -   | 4     | -     | 2    | *   | ***            |
| 8  | 111             | 20BS1202 | OMPUTER APPLICATIONS AND NFORMATION TECHNOLOGY CR |    | 2  | -   | -     | -     | 2    | *   | ***            |
|    |                 |          |                                                   |    | 18 | -   | 12    | -     | 24   |     |                |

# III SEM - BBG

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COURCE         |                                                       | CR      | SC | HEM | E OF | TEACH | IING | PRE | E REQUISITE    |
|----|-----------------|----------------|-------------------------------------------------------|---------|----|-----|------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | COURSE<br>CODE | COURSE TITLE                                          | /<br>AU | L  | Т   | P    | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BT2301       | PRINCIPLES OF RECOMBINANT DNA TECHNOLOGY              | CR      | 4  | -   | ı    | 1     | 4    | *   | ***            |
| 2  | 111             | 20BC2301       | HUMAN PHYSIOLOGY                                      | CR      | 4  | -   | -    | -     | 4    | *   | ***            |
| 3  | 111             | 20GN2301       | BASIC HUMAN GENETICS AND GENETIC ENGINEERING.         | CR      | 4  | -   | 1    | -     | 4    | *   | ***            |
| 4  | 111             | 20BS2301       | MOLECULAR BIOLOGY                                     | CR      | 4  | -   | -    | 1     | 4    | *   | ***            |
| 5  | 111             | 20BT2371       | TECHNIQUES IN RECOMBINANT DNA<br>TECHNOLOGY - LAB     | CR      | -  | -   | 4    | 1     | 2    | *   | ***            |
| 6  | 111             | 20BC2371       | CLINICAL BIOCHEMISTRY - LAB                           | CR      | -  | -   | 4    | 1     | 2    | *   | ***            |
| 7  | 111             | 20GN2371       | BASIC HUMAN GENETICS AND GENETIC<br>ENGINEERING - LAB | CR      | -  | -   | 4    | -     | 2    | *   | ***            |
| 8  | 111             | 20BS2302       | ENVIRONMENTAL SCIENCE CR                              |         | 2  | -   | ı    | -     | 2    | *   | ***            |
|    |                 |                |                                                       |         | 18 | -   | 12   | -     | 24   |     |                |

# <u>IV SEM – BBG</u>

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COURSE   |                                                       | CR | SC | HEM | E OF | TEACH | IING | PRI | E REQUISITE    |
|----|-----------------|----------|-------------------------------------------------------|----|----|-----|------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | CODE     | COURSE TITLE                                          |    | L  | T   | P    | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BT2401 | PRINCIPLES OF ANIMAL AND PLANT<br>BIOTECHNOLOGY       | CR | 4  | -   | ı    | 1     | 4    | *   | ***            |
| 2  | 111             | 20BC2401 | ENZYMOLOGY AND PROTEIN CHEMISTRY                      | CR | 4  | -   | 1    | ı     | 4    | *   | ***            |
| 3  | 111             | 20GN2401 | APPLIED GENETICS.                                     | CR | 4  | -   | -    | 1     | 4    | *   | ***            |
| 4  | 111             | 20BS2401 | GENOMICS AND PROTEOMICS                               | CR | 4  | -   | -    | -     | 4    | *   | ***            |
| 5  | 111             | 20BT2471 | TECHNIQUES IN ANIMAL AND PLANT<br>BIOTECHNOLOGY - LAB | CR | -  | -   | 4    | -     | 2    | *   | ***            |
| 6  | 111             | 20BC2471 | ENZYMOLOGY - LAB                                      | CR | -  | -   | 4    | -     | 2    | *   | ***            |
| 7  | 111             | 20GN2471 | APPLIED GENETICS - LAB                                | CR | -  | -   | 4    | -     | 2    | *   | ***            |
| 8  | 111             | 20BS2402 | IOETHICS AND IPR CH                                   |    | 2  | -   | -    | -     | 2    | *   | ***            |
|    |                 | _        |                                                       |    | 18 | -   | 12   | -     | 24   |     |                |

# <u>V SEM – BBG</u>

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COLIDCE        |                                                       | CR      | SC | HEM | E OF | TEACH | IING | PRI | EREQUISITE     |
|----|-----------------|----------------|-------------------------------------------------------|---------|----|-----|------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | COURSE<br>CODE | COURSE TITLE                                          | /<br>AU | L  | Т   | P    | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BT3501       | FERMENTATION BIOTECHNOLOGY                            | CR      | 4  | -   | -    | -     | 4    | *   | ***            |
| 2  | 111             | 20BC3501       | METABOLISM                                            | CR      | 4  | -   | -    | -     | 4    | *   | ***            |
| 3  | 111             | 20GN3501       | POPULATION AND EVOLUTIONARY GENETICS                  | CR      | 4  | -   | 1    | ı     | 4    | *   | ***            |
| 4  | 111             | 20BS3571       | ESTIMATION OF BIOMOLECULES -<br>LAB                   | CR      | -  | -   | 4    | -     | 2    | *   | ***            |
| 5  | 111             | 20BS3573       | FERMENTATION TECHNIQUES AND POPULATION GENETICS - LAB | CR      | -  | -   | 4    | -     | 2    | *   | ***            |
| 6  | 111             | 20AU0003       | CONSTITUTION OF INDIA AND HUMAN AU 2                  |         | -  | -   | *    | ***   |      |     |                |
| 7  | 111             | 20AU0020       | KANNADA KALI – I                                      | AU      | 2  | -   | -    | -     | -    | *   | ***            |
| 8  | 111             | 20AU0022       | KANNADA MANASU – I                                    | AU      | 2  | -   | -    | 1     |      | *   | ***            |
|    |                 |                |                                                       | •       | 16 | -   | 08   | -     | 16   |     |                |

# <u>VI SEM – BBG</u>

# (BIOTECHNOLOGY, BIOCHEMISTRY & GENETICS)

|    |                 | COURSE   |                      | CR      | SC | HEM | IE OF | TEACH | IING | PRI | E REQUISITE    |
|----|-----------------|----------|----------------------|---------|----|-----|-------|-------|------|-----|----------------|
| SL | PROGRAM<br>CODE | CODE     | COURSE TITLE         | /<br>AU | L  | Т   | P     | S/P   | С    | SEM | COURSE<br>CODE |
| 1  | 111             | 20BS3601 | RESEARCH METHODOLOGY | CR      | 4  | -   | -     | -     | 2    | *   | ***            |
| 2  | 111             | 20BS3602 | PROJECT              | CR      | -  | -   | 12    | -     | 6    | *   | ***            |
|    |                 |          |                      |         | 4  | -   | 12    | -     | 08   |     |                |

| SEMESTER            | I            |          |           |                  |       |         |
|---------------------|--------------|----------|-----------|------------------|-------|---------|
| YEAR                | I            |          |           |                  |       |         |
| COURSE CODE         | 20BT11       | 01       |           |                  |       |         |
| TITLE OF THE COURSE | <b>FUNDA</b> | MENTAI   | LS OF CEI | LL BIOLOGY       |       |         |
|                     | Lecture      | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours        | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4            | 0        | 0         | 0                | 48    | 4       |
|                     |              |          |           |                  |       |         |

|   | Perquisite Courses (if any)                |  |  |  |  |  |  |  |  |
|---|--------------------------------------------|--|--|--|--|--|--|--|--|
| # | # Sem/Year Course Code Title of the Course |  |  |  |  |  |  |  |  |
| 1 | 1 NA NA NA                                 |  |  |  |  |  |  |  |  |

- To equip students with the basic understanding of structures and functions of organelles of prokaryotic and eukaryotic cells.
- To impart understanding on the process of cell division, cell cycle and its control.

### **COURSE OUTCOMES:**

| CO No. | Outcomes                                                        | Bloom's<br>Taxonomy Level |
|--------|-----------------------------------------------------------------|---------------------------|
| CO1    | Students should have basic knowledge on the structure and       | L2                        |
|        | functions of cellular organelles.                               |                           |
| CO2    | Students should be able to understand the concept of cell cycle | L3                        |
| CO3    | Cell cycle and its control                                      | L4                        |
| CO4    | Cell growth; Different stages in cell division: Meiosis and     | L3                        |
|        | Mitosis and their relevance                                     |                           |

# **COURSE CONTENT:**

# **MODULE 1: ULTRA STRUCTURE OF CELL**

12Hr

Prokaryotic (Bacteria) and Eukaryotic cells (Animal and Plant) - Characteristics and differences. Cell Wall: Ultrastructure, chemical composition and function. Plasma membrane: Chemical composition (Lipids, Proteins, Carbohydrates), Structure (Fluid mosaic model). Mode of transport across membrane: Active Transport (Pumps) and Passive transport (Osmosis, Diffusion).

# **MODULE 2: CELL ORGANELLES-I**

12Hrs

Structure and general functions: Chloroplast (Envelope, Stroma, Thylakoids); Endoplasmic Reticulum (Smooth and Rough); Golgi complex (Cisternae, Tubules, Vesicles); Mitochondria; Ribosomes; Lysosomes (Primary and Secondary); Microsomes.

# **MODULE 3: CELL ORGANELLES -II**

12Hrs

Structure and general functions: Cytoskeleton (Microtubules, Microfilaments and Intermediate Filaments); Cilia and Flagella. Structure and general functions of Nucleus (Nuclear envelope, Nucleoplasm and Nucleolus). Chromosomes- Discovery, Structure and functions (Centromere, Secondary constrictions, Telomere). Types of Chromatin (Euchromatin and Heterochromatin);

Dosage Compensation. Organization of Chromatin: Nucleosomes and Solenoid Model; Giant Chromosomes (Polytene and Lampbrush).

# MODULE 4: CELL GROWTH AND CELL DIVISION

12Hrs

Cell cycle: Introduction to cell cycle stages (Interphase and M phase); Introduction to Cell cycle control (Cyclins and Cyclin dependent kinases). Mitosis: Mitotic phases; Cytokinesis; Significance of Mitosis. Meiosis: First meiotic division; Second meiotic division, Synaptonemal complex; Significance of meiosis. Introduction to programmed cell death (Apoptosis & Necrosis).

| List of Laboratory/Practical Experiments activities to be conducted (if any) : NONE |
|-------------------------------------------------------------------------------------|
| 1.                                                                                  |
| 2.                                                                                  |

# **TEXT BOOKS:**

- 1. Verma P. S. Cell Biology, Genetics, Molecular Biology: Evolution and Ecology (2006). S Chand Publishers.
- 2 Gerald Karp. Cell and Molecular Biology. 6th Edition (2009) Wiley Publications.

- 1. Bruce Alberts et al. Molecular Biology of the cell (2002) Garland Publications. Ambrose and Esty D. M. Cell Biology (1997) ELBS Publications.
- 2. Robertis E. D. F. and Robertis E. M. F. Genetics and Molecular Biology (2001) Saunders College.

| SEMESTER            | I       |          |           |                  |       |         |
|---------------------|---------|----------|-----------|------------------|-------|---------|
| YEAR                | I       |          |           |                  |       |         |
| COURSE CODE         | 20BC11  | 01       |           |                  |       |         |
| TITLE OF THE COURSE | BASIC   | BIOCHE   | MISTRY    |                  |       |         |
|                     | Lecture | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4       | 0        | 0         | 0                | 48    | 4       |
|                     |         |          |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |  |  |  |
| 1 | NA                          | NA          | NA                  |  |  |  |  |  |  |  |

- To familiarize the students with basic concepts and principles of conformation and energy transfer in biological systems.
- To create general understanding about fundamentals of biomolecules, and their structure and significance.

### **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                 | Bloom's<br>Taxonomy<br>Level |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | The students will know about pH, buffer and will be able to decide                                                                       | L2                           |
|        | the importance of biological reactions.                                                                                                  |                              |
| CO2    | The students will have an insight of structure and functions of biomolecules                                                             | L3                           |
| CO3    | Students will have a better insight of basics of biochemistry with a detailed understanding of the clinical significance of biomolecules | L4                           |

| COURSE CONTENT: |   |      |  |      |       |
|-----------------|---|------|--|------|-------|
|                 |   |      |  |      |       |
| MODULE 1        | • |      |  |      | 12Hrs |
|                 |   | <br> |  | <br> |       |

Water and Buffers: Modern concepts of acids and bases; Ionization of acids. Dissociation of water and ionic product of water, Hydrogen bonding properties of water, Definition and determination of pH and associated numerical; Common ion effect with examples, Buffer preparation by H-H equation, buffer types. Numerical problems on preparation of buffer solutions, Biological buffers and their reactions.

| MODULE 2 | 12Hrs |
|----------|-------|
|----------|-------|

# Conformation and energy transfer

Stereoisomerism: Optical isomerism: Chirality, Nomenclature of enantiomers -The RS and the DL system. Optical rotation, racemisation and resolution. Fischer projection formula. Geometrical isomerism: Cis trans-isomerism, examples of chirality in the biological world. Thermodynamics: First and second law, free energy, entropy, chemical potential, standard free energy change, exergonic and endergonic reactions with examples. Relationship between free energy change and equilibrium constant. Oxidation and reduction reactions in biology

| MODULE 3 | 12Hrs |
|----------|-------|

# Carbohydrates and lipids

*Carbohydrates:* Classification—monosachharides, disaccharides, oligosaccharides with examples; Polysaccharides—structural and storage; mucopolysaccharides—peptidoglycan and teichoic acid.

*Lipids*: classification – simple, complex and derived with examples. Properties of lipids: interaction with water; micelle, layer, liposome and membrane formation; Saponification, rancidity and iodine number.

MODULE 4 12Hrs

### Amino acids and nucleic acids

Amino acids: General structure of amino acids, acid base property, isoelectric point, peptide bond, classification of proteins based on solubility – fibrous and globular, classification of protein based on location: intracellular, extracellular and membrane bound proteins, introduction to protein hierarchy. Native state and denatured state of proteins Nucleic acid: Structure of nitrogen base – purine and pyrimidine, general structure of nucleosides and nucleotides. Melting of DNA, melting temperature, renaturation of nucleic acids.

| List of Laboratory/Practical Experiments activities to be conducted (if any): NONE |
|------------------------------------------------------------------------------------|
| 1.                                                                                 |
| 2                                                                                  |

### **TEXT BOOKS:**

- 1. Principles of Biochemistry Lehninger, Nelson and Cox. Freeman Publishers, 6th Ed
- 2. Zubay's Principles of Biochemistry Rastogi and Aneja. MedTech 5th Edition
- 3. Biochemistry Berg, Tymoczko and Stryer. Freeman Publishers, 5th Ed.
- 4. Biochemistry Voet and Voet. Wiley & Sons. 4th Ed
- 5. Biochemistry with medical correlations Devlin. Wiley & Sons, 7th Ed
- 6. Stereochemistry of Carbon Compounds, Eliel (1977) Tata-McGrawHill

| SEMESTER            | I              |          |           |                  |       |         |
|---------------------|----------------|----------|-----------|------------------|-------|---------|
| YEAR                | I              |          |           |                  |       |         |
| COURSE CODE         | CODE 20GN1101  |          |           |                  |       |         |
| TITLE OF THE COURSE | BASIC GENETICS |          |           |                  |       |         |
|                     | Lecture        | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours          | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4              | 0        | 0         | 0                | 48    | 4       |
|                     |                |          |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |

- To gain insight on the historical perspective of the evolution of genetics.
- To comprehend and identify the different types of mendelian and non-mendelian inheritance.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                         | Bloom's<br>Taxonomy<br>Level |
|--------|------------------------------------------------------------------|------------------------------|
| CO1    | Students will have clarity to the background of genetics before  | L3                           |
|        | getting into details in the forthcoming semesters                |                              |
| CO2    | They will be capable differentiate between mendelian and non     | L3                           |
|        | mendelian inheritance sources along with associated intricacies. |                              |
| CO3    | Student will gain the ability to analyze and relate phenotype to | L3                           |
|        | genotype and potential factors influencing the interaction.      |                              |

# **COURSE CONTENT:**

# MODULE 1: HISTORY OF GENETICS AND MENDELIAN PRINCIPLES 12Hrs

Pre- formation, History and scope of Genetics, Pre- Mendelian genetic concepts epigenesis, pangenesis, germplasm theory. Mendel- Life and his experiments on pea plants. Principle of Dominance (Dominance and Recessiveness); Laws of Inheritance and their applications. Monohybrid Cross, Dihybrid Cross, Back Cross, Test Cross

# MODULE 2: EXTENSIONS OF MENDELISM AND GENE INTERACTIONS | 12Hrs

Co-dominance and incomplete dominance - definition, examples. Multiple allelism-definition, Eye color in Drosophila, Blood groups and Rh factor in Human; Allelic series; Lethal alleles; Multi- factorial inheritance- Skin colour in Humans; Penetrance and Expressivity; Plieotropy. Epistasis- dominant, recessive. Supplementary and Complementary gene interactions; Non epistatic inter allelic gene interaction, Position effect.

| MODULE 3: SEX DETERMINATION AND EXTRA CHROMOSOMAL                            | 12Hrs |  |  |
|------------------------------------------------------------------------------|-------|--|--|
| INHERITANCE                                                                  |       |  |  |
| Chromosomal theory of Inheritance - Concepts and evidences. Mechanism of sex |       |  |  |
| determination- XX-XY; XX-XO; ZZ-ZW; Bridges genetic balance theory.          |       |  |  |
| Environmental and hormonal control of sex determination Gynandromorphs /     |       |  |  |

| Intersexes, Super sexes in Drosophila. Sex differentiation and dosage compensation |       |  |  |  |
|------------------------------------------------------------------------------------|-------|--|--|--|
| (Drosophila and Man). Sex linked and sex-limited traits in Humans. Hemophilia,     |       |  |  |  |
| Hypertrichosis. Extra Chromosomal inheritance, flower colour in Mirabilis jalapa,  |       |  |  |  |
| kappa particle in Paramecium, sigma factor in Drosophila, Cytoplasmic Male         |       |  |  |  |
| Sterility (CMS) in maize.                                                          |       |  |  |  |
| MODULE 4 MODEL ORGANISMS IN GENETICS                                               | 12Hrs |  |  |  |
| Bacteria - E. coli; Viruses - Tobacco Mosaic Virus; Bacteriophage - Lambda         |       |  |  |  |
| Phage; Fungi- Neurospora species, N crassa, Saccharomyces cerevisiae;              |       |  |  |  |
| Nematode - Caenorhabditis elegans, Plant - Arabdosis thaliana, Fly - Drosophila    |       |  |  |  |
|                                                                                    |       |  |  |  |
| melanogaster, Fish - Zebra fish (Danio rerio), Mammal - Mice (Mus musculus)        |       |  |  |  |

### **TEXT BOOK:**

- 1. Verma P. S. Cell Biology, Genetics, Molecular Biology: Evolution and Ecology (2006). S Chand Publishers.
- 2. Strickberger M. W., Genetics. (1968) Macmilla Publishers.

- 1. Mathew Hamilton, (2009) Population Genetics, Wiley-Blackwell
- 2. Snustad D. P., Simmons M. J., Principles of Genetics. 5th Edition (2008) John Wiley & Sons.
- 3. Brooker R. B., Genetics Analysis and Principles. Fourth Edition (2009) McGraw-Hill.
- 4. Tamarin R. H., Principle of Genetics. Seventh Edition. (2002) Tata-McGraw Hill.
- 5. Hart D and Jones E.W., Genetics Principles and Analysis. 4th Edition (1998) Jones and Bartlett Publication.
- 6. Atherly A. G., Girton J. R. and Donald M. C. J. F. The Science of Genetics (1999) Sounders College Publication / Harcourt Brace.
- 7. Sturtevant A. H., A History of Genetics (1965). Harper and Row New York. Mendel G. The First Geneticist by Orel V. (1996) Oxford University Press, New York.
- 8. Ross S. A first course in Probability. 4th Edition (1994). McMillan, New York.
- 9. Stansfield W. D., Theory and problems of Genetics (Schaum's Outline Series). (2002) McGraw Hill.
- 10. Stubbe H., History of Genetics (1972). Harper and Row New York.
- 11. Prasad S. Fundamentals of Biostatistics (1993). Emkay publications, New Delhi.
- 12. Khan and Khanum. Fundamentals of Biostatistics. II Revised Edition. (2004). Ukaaz Publication.

| SEMESTER            | I        |                 |           |                  |       |         |
|---------------------|----------|-----------------|-----------|------------------|-------|---------|
| YEAR                | I        |                 |           |                  |       |         |
| COURSE CODE         | 20BS1101 |                 |           |                  |       |         |
| TITLE OF THE COURSE | BASIC    | BASIC CHEMISTRY |           |                  |       |         |
|                     | Lecture  | Tutorial        | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours    | Hours           | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4        | 0               | -         | -                | 48    | 4       |
|                     |          |                 |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| - | -                           | -           | -                   |  |  |  |

- To make the students to understand basic facts and concepts in chemistry while retaining the exciting aspects of chemistry so as to develop interest in the study of chemistry as a discipline.
- To make the students to familiarize with the basic concepts related to modern atomic theory, quantum chemistry, acids and bases, chemical bonds in molecules and basics of organic chemistry and different organic reactions.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                          | Bloom's<br>Taxonomy<br>Level |
|--------|---------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Students will learn about handling of data and basics of acids and bases                          | L1                           |
| CO2    | Students will learn about advanced principles of atomic structure                                 | L2                           |
| CO3    | Students will get in depth knowledge about chemical bonding and various theories related to that. | L3                           |
| CO4    | Students will learn about the basic principles of organic chemistry                               | L1                           |

# **COURSE CONTENT:**

MODULE 1 12Hrs

**GENERAL CHEMISTRY:** Handling of analytical data: SI and CGS units of measurements and physical constants and their inter conversion; Significant figures and calculations, accuracy, precision and errors in quantitative analysis. Stoichiometry: atomic weights, molecular weights, mole concept, molarity, molality, normality, mole fraction, ppt, ppb and ppm. Numerical problems related to the above concepts.

**Acids and Bases:** Theories of acids and bases – Arrhenius - Bronsted-Lowry theory - Lewis theory -Solvent system definition. Relative strengths of acids and bases – Dissociation constant of acids and bases - Levelling effect of water. Hard and soft acids and bases (HSAB). Non-aqueous solvents – classification - Liquid ammonia as solvent. Acid-base equilibria in aqueous solution and pH. Acid-base neutralisation curves; indicator, choice of indicators.

| MODULE 2 | 12Hrs |
|----------|-------|
|----------|-------|

**ATOMIC STRUCTURE:** Review of Bohr's theory and its limitations, dual behavior of matter and radiation, de Broglie's equation-derivation, Heisenberg's uncertainty principle. Hydrogen atomic spectra. Need of a new approach to atomic structure. Elements of Quantum chemistry- Schrodinger wave equation and meaning of various terms in it. Significance of  $\psi$  and  $\psi$ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Quantum numbers and their Significance. Shapes of s, p and d atomic orbitals, nodal planes. Rules for filling up of electrons in various orbitals (Aufbau principle, Pauli's exclusion principle, Hund's rule of maximum multiplicity and n+1 rule), Electronic configuration of the elements (up to Z=30) and anomalous electronic configurations. Stability of half-filled and completely filled orbitals- concept of pairing and exchange energy.

MODULE 3 12Hrs

Introduction: Need for the atoms to form molecules, and types of chemical bonds with examples Ionic Bond: Definition and conditions for formation of an ionic bond between atoms, examples of formation of an ionic compound between alkali metal/alkaline earth metals and chalcogen/halogen group elements. Lattice energy, its effect on stability and solubility of ionic solids, Born – Haber cycle for NaCl, KBr, KI, and MgO and CaCl<sub>2</sub>). Covalent Bond: Definition, octet rule, Lewis dot formulae of a few simple molecules and ions, electron deficient and excess molecules (BeCl<sub>2</sub>, BF<sub>3</sub>, PCl<sub>5</sub>, SF6). Geometry of covalent molecules: (VSEPR concept and hybridisation concepts) basic concepts and definitions: Examples simple inorganic molecules and ions. such as NH<sub>3</sub>, H<sub>2</sub>O, H<sub>3</sub>O+, SF<sub>4</sub>, ClF<sub>3</sub>. Theories of covalent bonds (VBT and MOT): Valence bond theory (VBT): postulates and its limitations, directional characteristics of covalent bonds, Application of VBT to BeCl<sub>2</sub>, BF<sub>3</sub>, SiCl<sub>4</sub>, PCl<sub>5</sub>, SF<sub>6</sub> molecules.

Molecular orbital theory: postulates, linear combination of atomic orbitals (LCAO), bonding, nonbonding and antibonding molecular orbitals, pictorial representation of formation of s and p MOs from the corresponding atomic orbitals, Molecular orbital energy level diagram and molecular orbital configuration involving s and p orbitals their importance for the following molecules, (H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, HF and CO).

Metallic Bond: Definition, properties of metals and band theory.

Weak Intermolecular interactions: van der walls forces, dipole-dipole interactions and their significance. Hydrogen Bond: Definition, types, importance

MODULE 4 12Hrs

Representation of structural formula of organic compounds: condensed formula and bond line formula of organic compounds, classification of organic compounds based on functional groups with examples *IUPAC nomenclature*: IUPAC nomenclature of organic compounds including Bifunctional compounds and substituted benzenes. (o, p and m). *Delocalisation of electrons*: Inductive effect, electrometric effect, resonance (mesomeric effect, EWG and EDG, +M and -M effects) and hyper conjugation. *Reactive intermediates*: Types of bond cleavage, curly arrow rules in representation of mechanistic steps; electrophiles, nucleophiles, carbocations, carbanions, free radicals and carbenes—generation, structures, stability and examples. *Types of organic reactions*: Types of organic reactions with examples (electrophilic/ nucleophilic substitution/addition/free radical reaction with examples. *Aromaticity*: Kekule structure of benzene - molecular orbital picture of benzene - resonance energy and stability of benzene - Huckel's rule (aromatic,

non-aromatic, and antiaromatic molecules) - aromaticity of benzene and benzenoid compounds - aromaticity of three, four, five, six, seven and eight-membered systems - annulenes.

# **TEXT BOOKS:**

- A New Concise Inorganic Chemistry", J. D. Lee, 5th Ed, Chapman & Hall, London (1996).
- 2. Organic Chemistry. R.T. Morrison and R.N. Boyd. 6th Ed. Prentice Hall, India (1992)
- 3. Physical chemistry, 9th Ed., Peter Atkins and Julio de Paula, Oxford University Press (2009)

- 1. A New Concise Inorganic Chemistry", J. D. Lee, 5th Ed, Chapman & Hall, London (1996).
- 2. Organic Chemistry. R.T. Morrison and R.N. Boyd. 6th Ed. Prentice Hall, India (1992)

| SEMESTER            | I                                |          |           |                  |       |         |
|---------------------|----------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                | I                                |          |           |                  |       |         |
| COURSE CODE         | 20BT11                           | 71       |           |                  |       |         |
| TITLE OF THE COURSE | TECHNIQUES IN CELL BIOLOGY - LAB |          |           |                  |       |         |
|                     | Lecture                          | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours                            | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         |                                  |          | 4         | -                | •     | 2       |
|                     |                                  |          |           |                  |       |         |

| Perquisite Courses (if any) |          |             |                     |  |
|-----------------------------|----------|-------------|---------------------|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |
| -                           | -        | -           | -                   |  |

- To equip students with the basic techniques used in cell biology
- To facilitate the study of cell size, cell count, stages in cell division, staining of cells

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                      | Bloom's<br>Taxonomy Level |
|--------|---------------------------------------------------------------|---------------------------|
| CO1    | Able to perform staining of cells                             | L3                        |
| CO2    | Identify stages of mitosis and meiosis                        | L3                        |
| CO3    | Be well versed with the use of simple and compound microscope | L4                        |

# List of Laboratory/Practical Experiments activities to be conducted (if any):

- 1. Introduction to Microscopy (Bright Field, Dark Field, Phase Contrast Microscopy)
- 2. Microscopic measurements using micrometry calibration of ocular and stage, measurement of onion epidermal cells and yeast by Micrometry.
- 3. Cell division: Study of mitosis using onion root tips.
- 4. Preparation of Buccal smears for study of Barr bodies.
- 5. Vital Staining of mitochondria (yeast).
- 6. Blood smear-differential staining.
- 7. Study of model organisms -Tobacco Mosaic Virus, Lambda Phage, Neurospora crassa, Caenorhabditis elegans, Arabidopsis thaliana, Drosophila.

### **TEXT BOOKS:**

1. Dr. Renu Gupta, Dr. Seema Makhija, Dr. Ravi Toteja. Cell Biology: Practical Manual. Prestige Publishers, 2018.

- 1. <u>Amit Gupta</u> and <u>Bipin Kumar Sati</u>. Practical laboratory manual- CELL BIOLOGY. LAP Lambert Academic Publishing, 2019.
- 2. Alberts et al., (2002). Molecular Biology of the Cell, Garland Publishing, Inc., 4th ed.

| SEMESTER            | I       |           |            |                  |       |         |
|---------------------|---------|-----------|------------|------------------|-------|---------|
| YEAR                | I       |           |            |                  |       |         |
| COURSE CODE         | 20BC117 | <b>'1</b> |            |                  |       |         |
| TITLE OF THE COURSE | BASIC B | BIOCHEM   | IISTRY - I | LAB              |       |         |
|                     | Lecture | Tutorial  | Practical  | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours     | Hours      | Hours            | Hours |         |
| INSTRUCTION         | 0       | 0         | 4          | 0                | NA    | 2       |
|                     |         |           |            |                  |       |         |

| Perquisite Courses (if any) |          |             |                     |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |
| 1                           | NA       | NA          | NA                  |  |  |

- To familiarize the students with good lab practise how to make buffers.
- To create general understanding about detection of biomolecules.

# **COURSE OUTCOMES:**

|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DI                           |  |  |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| CO No.                                                                      | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bloom's<br>Taxonomy<br>Level |  |  |  |  |  |
| CO1                                                                         | The state of the few 11 to few 11 and 12 and |                              |  |  |  |  |  |
| CO1                                                                         | The students will be familiarized with handling laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L2                           |  |  |  |  |  |
|                                                                             | equipment like weighing balance, pH meter and potentiometer and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
|                                                                             | learn the importance and preparation of buffers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |  |  |
| CO2                                                                         | They will have an understanding of biomolecule composition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L3                           |  |  |  |  |  |
|                                                                             | edible materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |  |  |  |  |  |
| EXPERI                                                                      | EXPERIMENTS/PRACTICALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |  |  |  |  |  |
| 1. Calculation and preparation of buffers                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 2. Potent                                                                   | 2. Potentiometric titration of potassium hydrogen phthalate/HCl and sodium carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |  |  |  |  |  |
| 3. Potentiometric titration of HCl and sodium bicarbonate/ sodium hydroxide |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 4. Potentiometric titration of amino acid against NaOH and HCl              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 5. Estima                                                                   | 5. Estimation of proteins milk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 6. Estima                                                                   | 6. Estimation of carbohydrates in vegetables (Potatoes etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |  |  |  |  |  |
| 7. Estimation of lipids in milk/vegetables (avocadoes etc)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 8. Estimation of iodine number of edible oils                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |
| 9. Estimation of ascorbic acid in fruits by titrimetric method.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |  |  |  |  |  |

# **TEXT BOOKS:**

- 1. Introductory Practical Biochemistry- Sawhney and Singh. Narosa Publishing house. 2012, 7th ed
- 2. An Introduction to practical Biochemistry—Plummer D. T, Tata Mc Graw Hill

| SEMESTER            | I        |          |           |                  |       |         |
|---------------------|----------|----------|-----------|------------------|-------|---------|
| YEAR                | Ι        |          |           |                  |       |         |
| COURSE CODE         | 20GN1171 |          |           |                  |       |         |
| TITLE OF THE COURSE | BASIC    | GENETI(  | CS - LAB  |                  |       |         |
|                     | Lecture  | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours    | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 0        | 0        | 4         | 0                | -     | 2       |
|                     |          |          |           |                  |       |         |

|   |          |             | Perquisite Courses (if any) |
|---|----------|-------------|-----------------------------|
| # | Sem/Year | Course Code | Title of the Course         |
| - | _        | -           | -                           |

- To differentiate between the various stages of meiosis in animal and plant cells.
- To gain insight as to the different genetic interactions and their effect on phenotype.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                    | Bloom's<br>Taxonomy<br>Level |
|--------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Students will gain skills to process tissue into slides and distinguish various meiotic stages.                             | L3                           |
| CO2    | Students will be capable to analyse and identify gene interactions, predict crosses and understand its role in inheritance. | L4                           |

| List of Laboratory/Practical Experiments activities to be conducted (if any):       |  |  |  |  |
|-------------------------------------------------------------------------------------|--|--|--|--|
| 1. Temporary squash preparation of : Grasshopper Testes, Onion flower bud           |  |  |  |  |
| 2. Observation of meiotic stages in permanent slides                                |  |  |  |  |
| 3. Blood Typing                                                                     |  |  |  |  |
| 4. Sex differentiation in Drosophila                                                |  |  |  |  |
| 5. Detection of sex chromatin bodies: Preparation of Barr bodies from bucal smears. |  |  |  |  |
| 6. Genetic problems on:                                                             |  |  |  |  |
| (a) Probability                                                                     |  |  |  |  |
| (b) multiple alleles                                                                |  |  |  |  |
| (c) Gene interactions                                                               |  |  |  |  |
| (d) Sex Linkage                                                                     |  |  |  |  |
| 7. Study of:                                                                        |  |  |  |  |
| (a) Flower color in <i>Mirabilis jalapa</i>                                         |  |  |  |  |
| (b) Coat color in Mice                                                              |  |  |  |  |
| (c) Comb pattern in fowl.                                                           |  |  |  |  |

- 1. Brooker, R. J. 1999. Genetics: Analysis and Principles. Benjamin Cummings, Longman, INC.
- 2. Gardner E. J. M. J. Simmons and D.P. Snustad 1991 Principles of Genetics. John Wiley & Sons. INC.New York.
- 3. Klug, W. S. and M. R. Cummings 1994 Concepts of Genetics MacMillan Colley Publishing and Company NY.
- 4. Strickberger M. W. 1996. Genetics. Mac Millan Publishing Co. NewYork
- 5. Tamarin, R H. 1999. Principles of Genetics. McGraw-Hill.

| SEMESTER            | I       |                       |           |                  |       |         |
|---------------------|---------|-----------------------|-----------|------------------|-------|---------|
| YEAR                | Ι       |                       |           |                  |       |         |
| COURSE CODE         | 20BS110 | )2                    |           |                  |       |         |
| TITLE OF THE COURSE | COMM    | COMMUNICATIVE ENGLISH |           |                  |       |         |
|                     | Lecture | Tutorial              | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours                 | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 2       | -                     | -         | -                | 24    | 2       |
|                     |         |                       |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |

- To encourage the students to speak English confidently and enable them to communicate for day-to-day needs
- To build up their confidence in the usage of English and to enhance their written communicative competence also helping them for competitive exams

# **COURSE OUTCOMES:**

| CO No. | CO No. Outcomes                                          |    |
|--------|----------------------------------------------------------|----|
| CO1    | Students are confident in oral and written communication | L1 |
| CO2    | Have enhanced competence for competitive exams           | L2 |

# **COURSE CONTENT:**

| MODULE 1 | 6Hrs |
|----------|------|
|----------|------|

# **COMMUNICATION SKILLS**

Definition, importance of communication, communication process – source, message, encoding, channel, decoding, receiver, feedback, context, levels of communication, Flow of Communication, Verbal and Non-Verbal Communication, Barriers to Communication - physiological, physical, cultural, language, gender, interpersonal, psychological, emotional. Perspective in communication/ Communication styles: introduction, visual perception, language, other factors affecting our perspective – past experiences, prejudices, feelings, environment

MODULE 2 6Hrs

**Elements of communication** – introduction, face to face communication – tone of voice, body language (non-verbal communication), verbal communication, physical communication;

**Basic listening skills:** introduction, self-awareness, active listening, becoming an active listener, listening in difficult situations;

**Interview skills:** purpose of an interview, do's and dont's of an interview;

Giving presentations: dealing with fears, planning your presentation, structuring your

presentation, delivering your presentation, techniques of delivery;

Group discussion: introduction, communication skills in group discussion, do's and don't's of group discussion;

Phonetics: The Organs of Speech, The Description and Classification of Speech Sounds, The Description and Classification of Vowels, The Description and Classification of Consonants, Phonetic symbols and the IPA, Phonemic and Phonetic Transcription Phonology, Phoneme sequences and Consonant Cluster, The Syllable, Word Accent, Accent and Rhythm in Connected Speech, Intonation, Varieties of English Pronunciation.

**MODULE 3** 6Hrs

# **EFFECTIVE WRITING SKILLS**

Effective written communication: introduction, when and when not to use written communication - complexity of the topic, amount of discussion required, shades of meaning, formal communication

Writing effectively: subject lines, put the main point first, and know your audience, organisation of the message, Paragraph Writing, Letter Writing, Report Writing, Book Review, Scientific writing, Making a message - Transitivity/ intransitivity complementation – talking about closely linked action – using two verbs together (eg: She started laughing), Transforming messages - Making statements, questions, orders and suggestions - denying - rejecting - disagreeing - possibility - ability, permission, obligation etc.

**MODULE 4** 6Hrs

# **GRAMMAR**

Word Classes: Open Word Classes: - Nouns, Verbs, Adjectives, Adverbs, Pronouns; Closed Word Classes: - Pre-determiners, Determiners, Numerals, Enumrators, Prepositions, Conjunctions, Auxiliary Verbs, Interjection;

Morphology: Bound and Free Morphemes; Affixes, Stems and Roots; Morphological Analysis; Phrases: Noun Phrase, Verb Phrase, Genetive Phrase, Adjective Phrase, Adverb Phrase, Prepositional Phrase, Phrases and its types, Clauses and its types, Sentences and its types, Common errors, phonetics;

Clauses: Clause Elements, Clause Types, Kinds, Concord;

**Sentences:** Simple Sentences, Compound Sentences, Complex Sentences;

Sub Ordination: Sub-Clauses, Finite and Non-Finite Sub-Clauses; Co-ordination: Linked and Unlinked Coordination, Synthesis;

**Ambiguity:** Types of Ambiguity, Structural and Lexical Ambiguity;

Common Errors: Nouns and Pronouns, Articles, Verbs, Concord, Adjectives, Adverbs, Prepositions, Vocabulary, Expressing time, Referring to present, past and future time - use of adjuncts - frequency and duration, Talking about manner and place, Information about place, manner - position of adjuncts - types of adverbs (time, frequency, duration etc), Reporting what people say/think, Reporting verbs - reporting someone's actual words reporting in one's own words, The structure of information, Focusing on the thing affected (passive voice) - selecting focus (left structure) taking the focus off the subject (impersonal 'it' etc.) – Introducing something new (with 'there') - focusing on information using adjuncts.

# **TEXT BOOKS:**

- 1. Crystal, David. 1985, Rediscover Grammar with David Crystal. Longman
- 2. Bakshi, R. N. A Course in English Grammar. Orient Longman Close, R. A.

- Reference Grammar for Students of English. Orient Longman
- 3. Krishnaswamy, N. Modern English A Book of Grammar, Usage & Composition. Macmillan India, Ltd.
- 4. Aroor, Usha (Ed.) Word Master Learner's Dictionary of Modern English. Orient Longman 17
- 5. Hewings, M. 1999, Advanced English Grammar. Cambridge University Press
- 6. Basic communication skills for technology, Andreja J. Ruther Ford, 2nd Edition, Pearson Education, 2011.
- 7. Communication Skills, Sanjay Kumar, Pushpalata, 1st Edition, Oxford Press, 2011.
- 8. Brilliant Communication Skills, Gill Hasson, 1st Edition, Pearson Life, 2011.
- 9. Soft Skill and Professional Communication, Francis Peters SJ, 1st Edition, Mc Graw Hill Education, 2011.

| SEMESTER            | II      |          |           |                  |       |         |
|---------------------|---------|----------|-----------|------------------|-------|---------|
| YEAR                | I       |          |           |                  |       |         |
| COURSE CODE         | 20BT12  | 01       |           |                  |       |         |
| TITLE OF THE COURSE | PRINCI  | PLES OF  | 'IMMUN(   | DLOGY            |       |         |
|                     | Lecture | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4       | 0        | 0         | 0                | 48    | 4       |
|                     |         |          |           |                  |       |         |

|   | Perquisite Courses (if any)                |   |   |  |  |  |  |
|---|--------------------------------------------|---|---|--|--|--|--|
| # | # Sem/Year Course Code Title of the Course |   |   |  |  |  |  |
| - | _                                          | - | - |  |  |  |  |

- To provide basic understanding on Immune system: Cells and organs of the immune system and its fundamentals.
- To give basic framework and knowledge on structure and functions of antibodies, antigens and antigen specificity of antibodies. antigen -antibody interactions, generation of immune response and to equip the students with knowledge on immunological techniques, vaccines.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                                                                                              | Bloom's<br>Taxonomy<br>Level |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Student will be acquainted with the basic understanding of                                                                                                                                                            | L1                           |
|        | immune system in its entirety: the big picture.                                                                                                                                                                       |                              |
| CO2    | Acquaintance with the basic working of antibodies, functions of                                                                                                                                                       | L2                           |
|        | antibodies and their antigen specificity.                                                                                                                                                                             |                              |
| CO3    | Basic concepts of immune response: antigen processing and presentation, clonal selection and expansion. To enable critical thinking about its protective role in infectious diseases and their control; vaccinations. | L4                           |
| CO4    | Fundamental understanding of basic immunological techniques and their applications.                                                                                                                                   | L3                           |

| COURSE CONTENT:                                                                                                                                                                                                                                                                                                                                                                   |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| MODULE 1: COMPONENTS, CELLS AND TISSUES OF THE IMMUNE                                                                                                                                                                                                                                                                                                                             | 12Hrs           |
| SYSTEM                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Elements of Immune System: History and scope of Immunology, Innate, and A immunity, Humoral and Cell mediated Immunity. Cells and organs of immune systems their functions – Primary and secondary lymphoid organs, T cells, B Cells, macropha cells Basic outline or scheme of clonal selection in the humoral (B cell) and cellular branches of immunity. Immunological memory. | tem and age, NK |
| MODULE 2: ANTIGENS AND ANTIBODIES                                                                                                                                                                                                                                                                                                                                                 | 12Hrs           |
| Antigens and Antibodies: Antigens - types, epitopes, haptens, factors a                                                                                                                                                                                                                                                                                                           | ffecting        |

immunogenicity, adjuvant concept; Antibodies – structure, isotypes, and functions of Immunoglobulins. Antibody production: Polyclonal and monoclonal. Complement system – components, functions, activation pathways (classical, alternative, lectin mediated).

# **MODULE 3: IMMUNE RESPONSES**

12Hrs

Antigen processing and presentation, antigen presenting cells (APCs), target cell concept; Major Histocompatibility Complex (MHC) – MHC I and II. Interleukins and Interferons – brief introduction and their important functions. Products and factors produced by T-cell activation; dendritic cells; cytokines (interleukins and interferons) Primary and secondary Immune response.

# MODULE 4: IMMUNOLOGICAL TECHNIQUES AND VACCINES

12Hrs

Antigen-Antibody reactions – Precipitation, Immunoelectrophoresis, Hemagglutination – Blood grouping, ELISA, RIA, Immunofluorescence. Vaccines and Immunization: Passive and Active immunization, immunization schedules. Types of Vaccines – Inactivated, Attenuated, and Recombinant vaccines – Peptide and DNA Vaccines.

# List of Laboratory/Practical Experiments activities to be conducted (if any): NONE

1.

2.

### TEXT BOOKS:

- 1. Kindt TJ, Osborne BA, Goldsby RA. Kuby Immunology, Sixth Edition. 6th edition. New York: W. H. Freeman & Company; 2006.
- 2. C Vaman Rao (2007) Immunology (2nd Ed), Narosa Publishing.
- 3. Abbas, Lichtman, Pilliai (2011) Cellular and Molecular Immunology (7th Ed), Elsevier

- 1. Roitt IM (2001) Essentials of Immunology, Blackwell Scientific Publishers, London. Murphy, K., Weaver, C., Weaver, C., 2016. Janeway's Immunobiology. W.W.Norton & Company. https://doi.org/10.1201/9781315533247.
- 2. Jr, C.A.J., Travers, P., Walport, M., Shlomchik, M.J., Jr, C.A.J., Travers, P., Walport, M., Shlomchik, M.J., 2001. Immunobiology, 5th ed. Garland Science.
- 3. Kuby Immunology 7th edition. Macmillan Publishers 2014.
- 4. Kuby Immunology, 8th Edition. Macmillan Publishers 2019.

| SEMESTER            | II      |          |           |                  |       |         |
|---------------------|---------|----------|-----------|------------------|-------|---------|
| YEAR                | I       |          |           |                  |       |         |
| COURSE CODE         | 20BC12  | 01       |           |                  |       |         |
| TITLE OF THE COURSE | BIOAN   | ALYTICA  | L TECHN   | NIQUES           |       |         |
|                     | Lecture | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4       | 0        | 0         | 0                | 48    | 4       |
|                     |         |          |           |                  |       |         |

|   | Perquisite Courses (if any)                |    |    |  |  |  |  |
|---|--------------------------------------------|----|----|--|--|--|--|
| # | # Sem/Year Course Code Title of the Course |    |    |  |  |  |  |
| 1 | NA                                         | NA | NA |  |  |  |  |

- To create general understanding about theoretical concepts of techniques used to detect and assay biomolecules.
- To familiarize the students with basic concepts and principles of biophysical and biochemical techniques used in biological sciences.
- To give holistic view for understanding the screening, isolation, separation and characterization of molecules.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                           | Bloom's<br>Taxonomy<br>Level |
|--------|--------------------------------------------------------------------|------------------------------|
| CO1    | Student will be scientifically equipped with understanding of the  | L3                           |
|        | about the different biomolecules and their important functions.    |                              |
| CO2    | Student will be aware of the analytical tools and their            | L3                           |
|        | instrumentation used in biotechnology/biological sciences.         |                              |
| CO3    | Students will have a basic understanding of biomedical equipments  | L4                           |
| CO4    | Students will be empowered for better prospects leading to project | L3                           |
|        | design and execution.                                              |                              |

# **COURSE CONTENT:**

MODULE 1 12Hrs

**Spectroscopy:** Wave particle duality, the concepts of electromagnetic spectrum, Concepts of Absorbance and Emission Spectroscopy, Beer-Lambert's law, application and its limitations. Extinction coefficient, Concepts of chromophore/auxochrome and Chromic shifts. Principle, schematics and applications of Colourimeter and UV-Vis Spectroscopy. Assay of biomolecules (Carbohydrates and Proteins). Principle, schematics and application of Luminometry, Tubidometry, Klett Photometry, Flame photometry and IR spectroscopy.

MODULE 2 12Hrs

# Chromatography

History and principle of Chromatography. Distribution/partition coefficient, Absorption and Adsorption phenomenon, Retention factor (Rf & Rt concepts). Types: Planar and columnar, S-L, L- L, G-S, G-L and G-G. Paper and thin layer chromatography, types and their

application in separation of biomolecules. Plate theory and Rate of theory; resolution, selectivity and effectiveness of columns, Types of matrices used, separation of biomolecules using gel permeation, ion exchange, affinity and adsorption chromatography with applications. Brief idea about High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC).

MODULE 3 12Hrs

**Electrophoresis:** Migration of ions in electric field, Factors affecting electrophoretic mobility. Paper electrophoresis, Cellulose acetate electrophoresis, High voltage electrophoresis and their Applications. Gel electrophoresis - Types of gels, Procedure, for gel making. Detection, Recovery & characterization of macromolecules (molecular weight determination and subunit enumeration). Principle and application of Poly acralamide Gel Electrophoresis (PAGE), Iso-electric focussing (IEF) and 2D-PAGE, Submerged agarose gel electrophoresis (SAGE). Application of electrophoresis in molecular biology (genomics, transcriptomics and proteomics).

MODULE 4 12Hrs

**Isotopic tracer technique:** Radioactive & stable isotopes, Pattern and rate of radioactive decay. Measurement of radioactivity: Geiger-Muller counter, Solid & Liquid scintillation counters (Basic principle, instrumentation & technique), Autoradiography their advantages and limitations.

**Centrifugation:** Basic principles, RCF, Svedberg constant and Sedimentation coefficient. Preparative centrifugation: Differential & density gradient centrifugation, Applications. Analytical centrifugation: Determination of molecular weight of biomolecules.

**Immunological techniques:** Immuno-diffusion, immuno-electrophoresis and immuno-fluorescence.

# **TEXT BOOKS:**

- 1. Principles and Techniques of Practical Biochemistry Keith Wilson and John Walker. Cambridge low price edition.
- 2. Biophysical Chemistry Upadhyay, Upadhyay and Nath. Himalaya Publications

- 1. Analytical Techniques in Biochemistry and Molecular biology Katoch. Springer.
- 2. Fundamentals of Analytical Chemistry Skoog, Holler and West. Saunders.
- 3. Handbook of Analytical Techniques Gunzler and Williams. Wiley & Sons.
- 4. Immunology Kuby. Freeman Publishers.
- 5. A Textbook of Practical Biochemistry- Joshi and Saraswat. Jain Publishers.

| SEMESTER            | II      |          |           |                   |       |         |
|---------------------|---------|----------|-----------|-------------------|-------|---------|
| YEAR                | I       |          |           |                   |       |         |
| COURSE CODE         | 20GN12  | 01       |           |                   |       |         |
| TITLE OF THE COURSE | FUNDA   | MENTAI   | LS OF CY  | <b>FOGENETICS</b> |       |         |
|                     | Lecture | Tutorial | Practical | Seminar/Projects  | Total | Credits |
| SCHEME OF           | Hours   | Hours    | Hours     | Hours             | Hours |         |
| INSTRUCTION         | 4       | 0        | 0         | 0                 | 48    | 4       |
|                     |         |          |           |                   |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |  |

- Understand the characteristics of chromosome and its related anomalies.
- Elucidation on the versatility of the chromosomes and its different interactions.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                    | Bloom's<br>Taxonomy<br>Level |
|--------|-------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Students will learn details on chromosomes, its conformations to bring about genetic variability.           | L2                           |
| CO2    | The students will get insight on chromosome abnormality which leads to cytogenetic aberrations and disease. | L3                           |

# **COURSE CONTENT:**

# MODULE 1 CHROMSOME CHARACTERISTICS 12Hrs

Physical basis of inheritance: chromosome theory of inheritance, Eukaryotic Chromosome-Macro- molecular organisation. Primary and Secondary constriction, Sat-bodies, telomeres, chromosome types. Heterochromatin and Euchromatin and its significance. Ultra structure of chromosome, Nucleosome model and Nucleosome Structure. Karyotype and Ideogram. Special types of chromosomes: Polytene chromosome- Salivary gland chromosome in Drosophila, Lamp- brush chromosome in amphibian Oocyte, B Chromosome.

# MODULE 2 LINKAGE

12Hrs

Introduction and definition of Linkage, Discovery of linkage, Coupling and Repulsion hypothesis, Linkage group- Drosophila, maize and man, Types of linkage-complete linkage and incomplete linkage, Factors affecting linkage distance between genes, age, temperature, radiation, sex, chemicals, nutrition, etc. Sex Linkage: Meiotic behavior of chromosome and non-disjunction. Bridges theories of non-disjunction. Sex linkage in Drosophila.

|                                                                                    | 1     |  |  |  |  |
|------------------------------------------------------------------------------------|-------|--|--|--|--|
| MODULE 3 CROSSING OVER                                                             | 12Hrs |  |  |  |  |
| Crossing over- definition and types of crossing over-germinal and somatic crossing |       |  |  |  |  |
| over. Cytological basis of crossing over- Sterns experiments in Drosophila.        | İ     |  |  |  |  |

| Mechanism of crossing over - chiasma type theory, the breakage first theory, the contact first theory, strain or torsion theory. Molecular mechanism of crossing over- Holliday model, single strand breaks. |       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| MODULE 4 CHROMOSOMAL ABERRATIONS                                                                                                                                                                             | 12Hrs |  |  |
| Numerical- Euploidy (Monoploidy, Haploidy and Polyploidy). Polyploidy-                                                                                                                                       |       |  |  |
| Autopolyploidy and Allopolyploidy. Aneuploidy- Monosomes, Nullisomes and                                                                                                                                     |       |  |  |
| Trisomes. Structural- Deletions, Duplication, Translocation, Inversions, Centric                                                                                                                             |       |  |  |
| fusion and centric fission. Evolutionary significance of chromosomal aberrations.                                                                                                                            |       |  |  |
| Genetic diseases and disorders.                                                                                                                                                                              |       |  |  |

# **TEXT BOOK:**

- 1. Verma P. S. Cell Biology, Genetics, Molecular Biology: Evolution and Ecology (2006). S Chand Publishers.
- 2. Strickberger M. W., Genetics. (1968) Macmilla Publishers.

- 1. Gupta P. K. 2009. Cytology, Genetics and Molecular Biology. Rastogi Publications.
- 2. Winter P. C., Hickey G. I. & Fletcher H. L. 2003. Instant notes in Genetics. Viva Books Pvt.Ltd.
- 3. Weaver R. F., Hendrick P. W. and Brown W.C. 1992. Genetics, 2nd Edition.
- 4. Sinha U., Sunita and Sunita Sinha.1981 Cytogenetics: Plant Breeding and evolution. Vikas publishing House.
- 5. Snustad D. P. and Simmons M. J. 2009. Principles of Genetics. John Wiley and Sons, INC.
- 6. Phundan Singh. 2013. Elements of Genetics, Edition 4, Kalyani Publishers.
- 7. Edgar Altenburg. 1970. Genetics. Oxford & IBH Publications.
- 8. Gardener E. J., Simmons M. J. and Snustad D. P. 1998. Principles of Genetics J. Wiley and Sons pubs.
- 9. Obe. G. and Natarajan A.T. 1990 Chromosomal Abberrations: Basic and Applied aspects Springer Verlag, Berlin.

| SEMESTER            | II      |          |           |                  |       |         |
|---------------------|---------|----------|-----------|------------------|-------|---------|
| YEAR                | I       |          |           |                  |       |         |
| COURSE CODE         | 20BS120 | 20BS1201 |           |                  |       |         |
| TITLE OF THE COURSE | BIOINE  | ORMAT    | ICS AND I | BIOSTATISTICS    |       |         |
|                     | Lecture | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours   | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 4       | -        | -         | -                | 48    | 4       |
|                     |         |          |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |

- To create general interest in applied domain towards using computers for biological applications.
- To familiarize the students with basic concepts and principles statistics and their applications in biological sciences.
- To give holistic view for understanding the scientific validation and biomodelling.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                     | Bloom's<br>Taxonomy<br>Level |
|--------|--------------------------------------------------------------|------------------------------|
| CO1    | Student will be aware of various applied and allied          | L2                           |
|        | scientifically domains to innovative and creative think.     |                              |
| CO2    | Student will be aware of the computer tools and applications | L2                           |
|        | which can be implemented in biological sciences.             |                              |
| CO3    | Students will be empowered for better prospects              | L3                           |
|        | leading to project design and execution.                     |                              |

# COURSE CONTENT: MODULE 1 12Hrs

**Introduction to computers:** History of Computers, Components of computers (Hardware, Software and accessories). Concepts on Computer software, operating system (Windows), tools and applications of MS Office (notepad, word processor, spread sheet & presentation). **Introduction to networks:** LAN, MAN & WAN, Network protocols- Internal protocol (TCP/IP), File transfer protocols (FTP), WWW, HTTP, HTML, URL. Network Security-Group polices Fire-walls. Concepts on encryption of data.

**Relational Databases Management (RDMS):** Codd Rules and concepts of databases, Data mining and applications, accessing bibliographic databases and Basics on citation and indexing (Pub Med and Google scholar).

# **Bioinformatics (Genomics):**

Nucleic acid sequence databank – NCBI, EMBL and DDBJ. Microbial genomic database

(MBGD), Cell line database (ATCC), Virus data bank (UICTVdb). Restriction mapping - NEB CUTTER. Gene Sequence alignment - Global and Local, Similarity searching (FastA and BLAST), Pair wise comparison of sequences, Multiple Sequence alignment of sequences, alignment, scoring matrices. Identification of genes in genomes and Phylogenetic analysis with reference to nucleic acids, Identification of ORFs.

MODULE 3 12Hrs

# **Bioinformatics (Proteomics):**

Introduction to protein structure – Primary, secondary structure prediction, tertiary structure prediction. Concepts on Protein Data Bank (PDB). Protein Sequence alignment - Global and Local, Similarity searching (FastA and BLAST), Pair wise comparison of sequences, Multiple Sequence alignment of sequences, alignment, scoring matrices. Identification of proteins, domain and motif and Phylogenetic analysis.

Protein sequence databank – NBRF-PIR, SWISSPROT and Swiss ExPASy. Metabolic pathway data bank (KEGG/Pub gene). Protein modeling - principles of homology and comparative modeling phylogenetics. Applications - Molecular docking – Patchdoc /Autodoc.

MODULE 4 12Hrs

Biostatistics: Introduction to Biostatistics and its significance, use of replicates, Tabulation and graphical representations of data. Different models of data presentations. Frequency distribution. Measures of Central tendency: Arithmetic mean, mode & median. Measures of variability: Range, mean deviation and percentiles. Standard deviation and co-efficient of variation, Standard error. Sampling methods and their significance. Testing of hypothesis: basic concepts and definitions, types of errors, confidence intervals. Statistical package - Features of statistical software. Introduction to statistical software (SPSS/ Graphpad/SigmaPlot/ImageJ) Databases.

# **TEXT BOOKS:**

- 1. Daniel (1999). Biostatistics (3 edition) Panima Publishing Corporation.
- 2. Khan (1999). Fundamentals of Biostatistics, Panima Publishing Corporation
- 3. Bioinformatics. Keith, J. Humana Press, 2008.
- 4. Bioinformatics. Sequence and genome analysis. D.W.Mount. Cold Spring Harbor Lab. press. 2004.

- 1. Swardlaw, A.C. (1985). Practical Statistics for Experimental Biologists.
- 2. Bazin, M.J. (1983). Mathematics in microbiology Academic press.
- 3. Green, R.H. (1979). Sampling design & Statistical methods for environmental Biologists, Wiley Int. N.Y.
- 4. Campbell, R.C. (1974). Statistics for Biologists, Cambridge Univ. Press, Cambridge.
- 5. Bliss, C.I.K. (1967). Statistics in Biology, Vol.1 Mc Graw Hill, New York. Wiley and Sons, Inc. NY.
- 6. Bioinformatics and functional genomics. J. Pevsner. Wiley-Liss, 2003.
- 7. Dhananjaya (2002) Introduction to Bioinformatics, www.sd-bio.com series.
- 8. Higgins & Taylor (2000). Bioinformatics, OUP.
- 9. Baxavanis (1998). Bioinformatics.
- 10. Fry, J.C. (1993). Biological Data Analysis. A practical Approach. IRL Press, Oxford.

| SEMESTER            | II      |                         |           |                  |       |         |  |
|---------------------|---------|-------------------------|-----------|------------------|-------|---------|--|
| YEAR                | I       |                         |           |                  |       |         |  |
| COURSE CODE         | 20BT12  | 20BT1271                |           |                  |       |         |  |
| TITLE OF THE COURSE | IMMUN   | IMMUNO-TECHNIQUES – LAB |           |                  |       |         |  |
|                     | Lecture | Tutorial                | Practical | Seminar/Projects | Total | Credits |  |
| SCHEME OF           | Hours   | Hours                   | Hours     | Hours            | Hours |         |  |
| INSTRUCTION         | 0       | 0                       | 4         | 32               | -     | 2       |  |
|                     |         |                         |           |                  |       |         |  |

| Perquisite Courses (if any) |          |             |                     |  |  |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |  |  |
| -                           | -        | -           | _                   |  |  |  |  |

- To acquaint the student with some basic techniques in immunology, to sensitize them to antigen antibody reactions and their applications
- To enable the students to get hands on learning to count viable cell in a hemocytometer and enable them to learn staining and identification of different white blood cells from the peripheral blood.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                                                   | Bloom's<br>Taxonomy<br>Level |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Student will be familiarized with immunological techniques utilized for diagnostic assays.                                                                                 | L2                           |
| CO2    | Student will be able to use hemocytometer to do cell counting and be able to stain and identify leucocytes from peripheral blood.                                          | L2                           |
| CO3    | Principle of ELISA and working of dot ELISA. ELISA as a quantitative tool to measure specific analytes.                                                                    | L3                           |
| CO4    | Know the principles behind hemagglutination vs<br>Immunoprecipitation techniques and correlate differentiate<br>between soluble to insoluble(particulate) antigen concepts | L3                           |

# List of Laboratory/Practical Experiments activities to be conducted (if any): 1. Blood group identification and Rh Typing 2. Precipitation Reactions — I. Radial Immuno Diffusion II. Ouchterlony double diffusion III. Rocket Immuno Electrophoresis 3. Dot ELISA 4. Serum separation and quantification of serum proteins 5. Introduction to instruments and laboratory set up for animal biotechnology 6. Determination of the concentration of viable cells in a suspension by Hemocytometer counting (trypan blue) 7. Study of different cells in whole blood using Giemsa/Leishman stain.

# **TEXT BOOKS:**

- 1. Balakrishnan, Senthilkumar & Karthik, Kaliaperumal & Duraisamy, Senbagam. (2015). Practical Immunology- A Laboratory Manual. 10.13140/RG.2.1.4075.4728
- 2. Hay, F.C., Westwood, O.M.R., 2002. Practical Immunology, 4th edition. ed. Wiley-Blackwell, Malden, MA.

# **REFERENCES:**

1. Lab Manual in Biochemistry, Immunology and Biotechnology by Nigam, Arti - AbeBooks." McGraw-Hill Education (India) (2008)

| SEMESTER            | II       |                                 |           |                  |       |         |
|---------------------|----------|---------------------------------|-----------|------------------|-------|---------|
| YEAR                | I        |                                 |           |                  |       |         |
| COURSE CODE         | 20BC1271 |                                 |           |                  |       |         |
| TITLE OF THE COURSE | BIOAN    | BIOANALYTICAL SEPARATIONS - LAB |           |                  |       |         |
|                     | Lecture  | Tutorial                        | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours    | Hours                           | Hours     | Hours            | Hours |         |
| INSTRUCTION         |          | 0                               | 4         | 0                | NA    | 2       |
|                     |          |                                 |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| 1 | NA                          | NA          | NA                  |  |  |  |

- To make students learn quantitative and qualitative methods for study of biomolecules.
- To provide hands-on training to physico-chemical methods.
- To give insights on isolation, separation and characterization of biomolecules.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                             | Bloom's<br>Taxonomy<br>Level |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Student will be equipped with methodology to study biomolecules using spectroscopic, electrophoretic and chromatographic techniques. | L2                           |
| CO2    | Students will have a complete understanding on methods to analyse biomolecules.                                                      | L3                           |
| CO3    | Students will be empowered for better prospects leading to project design and execution.                                             | L4                           |

# **EXPERIMENTS/PRACTICAL:**

- 1. Determination of extinction coefficient using colorimetry.
- 2. Determination of lambda maximum of biomolecules using UV spectroscopy.
- 3. Estimation of protein by Lowry method or Estimation of sugar by Miller method.
- 4. Estimation of pKa of amino acid (glycine).
- 5. Determination of density & viscosity of given unknown solution.
- 6. Circular Paper chromatography for amino acid/ sugars and Rf calculations.
- 7. Separation of amino acid by Thin Layer Chromatography (TLC).
- 8. Column chromatography of phyto-pigments on adsorbent (silica/alumina).

# **TEXT BOOKS:**

- 1. Principles and Techniques of Practical Biochemistry Keith Wilson and John Walker. Cambridge low price edition.
- 2. Biophysical Chemistry Upadhyay, Upadhyay and Nath. Himalaya Publications.
- 3. Analytical Techniques in Biochemistry and Molecular biology Katoch. Springer.

- 4. Fundamentals of Analytical Chemistry Skoog, Holler and West. Saunders.
- 5. Handbook of Analytical Techniques Gunzler and Williams. Wiley & Sons.
- 6. A Textbook of Practical Biochemistry- Joshi and Saraswat. Jain Publishers.

| SEMESTER            | II                                 |          |           |                  |       |         |
|---------------------|------------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                | Ι                                  |          |           |                  |       |         |
| COURSE CODE         | 20GN1271                           |          |           |                  |       |         |
| TITLE OF THE COURSE | FUNDAMENTALS OF CYTOGENETICS - LAB |          |           |                  |       |         |
|                     | Lecture                            | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF           | Hours                              | Hours    | Hours     | Hours            | Hours |         |
| INSTRUCTION         | 0                                  | 0        | 4         | 0                | -     | 2       |
|                     |                                    |          |           |                  |       |         |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |

- Identifying chromosome features and their status in animal and plants.
- Analyse linkage and crossing over problems by mapping method.
- Understanding cytogenetics using Drosophila as a model organism.

# **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                                                | Bloom's<br>Taxonomy<br>Level |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Student will gain skill to prepare and visualize chromosomal slides from various sources.                                                                               | L3                           |
| CO2    | Students can solve genetic linkage analysis by construct ion of cytogenetic maps on linkage. gene interactions, predict crosses and understand its role in inheritance. | L4                           |
| CO3    | Students will become skilled in handling and maintaining Drosophila cultures.                                                                                           | L2                           |

# List of Laboratory/Practical Experiments activities to be conducted (if any):

- 1. Micronuclei from buccal cell (H&E basic staining)
- 2. Preparation of Metaphase spreads from blood for Karyotyping.
- 3. Genetic Problems on linkage & crossing over Drosophila, Maize, Human (Sex Linkage)
- 4. Study of chromosomal aberration using karyotype information by observation of permanent slides of chromosomal aberrations. Cytogenetics using Drosophila as a model organism.
- 5. Culturing and Handling of Drosophila Media preparation, Handling drosophila.
- 6. Study of different types of Drosophila- Body color mutant- Ebony body and Yellow body, Wing mutant- Curly wing and vestigial wing and Eye color mutant- Bar eye, white eye, sepia eye.
- 7. Mounting of Sex Comb and Genital plate of Drosophila melanogaster
- 8. Salivary gland Chromosome Dissection of Salivary glands and preparation of polytene chromosome.

- 1. Drosophila Cytogenetics Protocols, Methods in Molecular Biology, Volume 247, Daryl S Henderson, Humana Press.
- 2. The AGT Cytogenetics Laboratory Manual, Marilyn S Arsham, Margaret J, March, Helen J Lawce, Fourth Edition, Wiley Blackwell.

| SEMESTER            | II      |              |           |                  |        |         |  |  |  |
|---------------------|---------|--------------|-----------|------------------|--------|---------|--|--|--|
| YEAR                | I       |              |           |                  |        |         |  |  |  |
| COURSE CODE         | 21BS120 | 02           |           |                  |        |         |  |  |  |
| TITLE OF THE COURSE | COMPU   | J <b>TER</b> | APPLICA   | TIONS AND        | INFORM | MATION  |  |  |  |
|                     | TECHN   | TECHNOLOGY   |           |                  |        |         |  |  |  |
|                     | Lecture | Tutorial     | Practical | Seminar/Projects | Total  | Credits |  |  |  |
| SCHEME OF           | Hours   | Hours        | Hours     | Hours            | Hours  |         |  |  |  |
| INSTRUCTION         | 2       | -            | -         | -                | 24     | 2       |  |  |  |
|                     |         |              |           |                  |        |         |  |  |  |

|   | Perquisite Courses (if any) |             |                     |  |  |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |  |
| - | -                           | -           | -                   |  |  |  |  |  |

• To create general interest in applied domain towards using computers for biological applications.

#### **COURSE OUTCOMES:**

| CO No. | Outcomes                                                     | Bloom's<br>Taxonomy<br>Level |
|--------|--------------------------------------------------------------|------------------------------|
| CO1    | Student will be aware of the computer tools and applications | L2                           |
|        | which can be implemented in biological sciences.             |                              |
| CO2    | Students will be empowered for better prospects leading      | L2                           |
|        | to project designand execution.                              |                              |

## **COURSE CONTENT:**

## **MODULE 1 History and Generations of Computers**

4Hrs

Evolution, Generations of computers (I, II, III, IV, V) Classification of computers (mainframes, mini computers, microcomputers, special purpose) Comparison with respect to memory, power, cost and size, Real-Time, Online, Offline, Overview and functions of a computer systems, Input and output devices, Storage devices: Hard disk, Diskette, Magnetic tape, RAID, ZIP, devices, Digital tape, CD-ROM, DVD (capacity and access time), Main Circuit Board of a PC: Chips, Ports, Expansion.

## **MODULE 2 Categories of Computers and Operating Systems**

4Hrs

The workstation, The Minicomputer, Mainframe Computers, Parallel processing Computer & the Super Computer, Operating System concepts, Windows 98/XP and later versions, Windows server NT/2000, Unix/Linux & servers. Introduction to networking: various terminologies, Associated hardware devices, gadgets (Router, Switch) tools, services, and resources, Network Topologies and Protocols, LAN, WAN and MAN World Wide Web (WWW) Network security: fire walls.

| MODULE 3 | 8Hrs |
|----------|------|

**Data processing & presentation:** Introduction, Office Automation Software (Open Source Software).

**Computer viruses and Internet Searches:** An overview of Computer viruses, What is a virus? Virus symptoms, How do they get transmitted? What are the dangers? General Precautions, Search engines: Google, Yahoo, Concepts in text-based searching, searching Medline, PubMed, and bibliographic databases.

## **MODULE 4 Algorithms, Flowcharts, Programming concepts & Bioinformatics**

Algorithms: Concepts & definitions, converting algorithms to flowchart; Coding: flowcharts to programs, Comparing algorithms, flowcharts & programs; Introduction & Overview of Biological databases. Introduction to Bio-informatics: Definition, Introduction to data mining, Computational gene finding — multiple alignment and sequence search (BLAST, FASTA, CLUSTALW). Applications of Bioinformatics.

8Hrs

- 1. Computer Fundamentals, 4th edition (2004) P.K. Sinha, BPB publication, India
- 2. Computer Networks. 4th edition (2008). Tanenbaum. Pearson Education, India
- 3. Biostatistics: P.N. Arora, P.K. Malha.
- 4. Introduction to Database Management Systems, 1st edition, (2004), Atul Kahate, Pearson education, India.

| SEMESTER                     | III     |                                          |           |                  |       |         |  |
|------------------------------|---------|------------------------------------------|-----------|------------------|-------|---------|--|
| YEAR                         | II      |                                          |           |                  |       |         |  |
| COURSE CODE                  | 20BT23  | 20BT2301                                 |           |                  |       |         |  |
| TITLE OF THE COURSE          | PRINCI  | PRINCIPLES OF RECOMBINANT DNA TECHNOLOGY |           |                  |       |         |  |
|                              | Lecture | Tutorial                                 | Practical | Seminar/Projects | Total | Credits |  |
| <b>SCHEME OF Instruction</b> | Hours   | Hours                                    | Hours     | Hours            | Hours |         |  |
|                              | 4       | 0                                        | 0         | 0                | 48    | 4       |  |

| Perq | Perquisite Courses (if any) |             |                     |  |  |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |  |
|      | -                           | -           | -                   |  |  |  |  |  |
|      |                             |             |                     |  |  |  |  |  |

- To give foundation of tools, vehicles used in cloning DNA.
- To impart basic principles of various vectors used in rDNA technology, their uses and limitations.
- To inculcate good fundamental knowledge in basics of gene cloning, including detection methods for screening the recombinants.
- To provide basic principles of analysis techniques employed in characterize the cloned recombinant DNA and to promote scope of application of rDNA technology.
- Principles of techniques to characterize cloned DNA, applications of rDNA technology.

## **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                                                 | Bloom's<br>Taxonomy<br>Level |
|-----------|----------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Understand the basic paradigm of rDNA technology and various enzymatic tools, vectors and their utility. | L2                           |
| CO2       | The sound in knowledge of steps involved in basic gene cloning                                           | L1                           |
| CO3       | A comprehensive knowledge on the various applications and scope of recombinant DNA technology.           | L3                           |

| COURSE CONTENT:                                                                |          |
|--------------------------------------------------------------------------------|----------|
|                                                                                |          |
| MODULE 1: INTODUCTION TO rDNA TECHNOLOGY                                       | 12Hrs    |
| History and fundamentals of r-DNA technology. Molecular tools for gene of      | cloning: |
| Nucleases -Endo and Exonucleases - Nomenclature, Types and characteristic f    | eatures. |
| Modification of cut ends. DNA ligases and DNA Recombinases. DNA Mo             | difying  |
| Enzymes - Alkaline phosphatase, Polynucleotide kinase, DNase, RNase, DNA poly  | merase   |
| and Klenow fragment, terminal nucleotidyl transferase, RNA dependent DNA Polyn | nerase.  |
|                                                                                |          |
| MODULE 2: VEHICLES FOR CLONING                                                 | 12Hrs    |
| Properties of an ideal vector. Types: Cloning and expression vectors. Cloning  | vectors: |

Prokaryotic vectors: Plasmids- pBR 322; pUC 18; Bacteriophages -Lambda phage, Cosmids. Eukaryotic vectors: YAC vectors; Shuttle vectors- Yeast and *E. coli*. For higher plants: Integrative DNA transfer- Agrobacterium vectors-Ti plasmid-Binary and Co integrated vectors; Non integrative DNA transfer-Plant viral vectors (CaMV) For animals: Animal viral vectors- SV 40 (3 types); Expression vectors in Prokaryotes and Eukaryotes

## **MODULE 3: GENE ISOLATION AND TRANSFER**

12Hrs

Isolation of passenger DNA. Cutting of DNA molecules - Physical methods, chemical and enzymatic methods. Joining of DNA molecules-Homopolymer tails, Linkers, Adapters. Transformation. Indirect methods - Colony hybridization, Immunochemical detection. Use of selectable and scorable genes: Selectable genes: Plants-npt; Animals-TK. Scorable genes: Plants-Gus; Animals-lux.

## MODULE 4: CHARACTERIZATION OF CLONED DNA

12Hrs

**Electrophoresis:** AGE and SDS-PAGE. Hybridization: Southern; Northern; Western; Dot blots, Autoradiography, DNA sequencing: Sanger's Dideoxy method, Molecular probes. **Application of rDNA technology:** Expression vectors (E coli/eukaryotic), Transgenic animals: Mouse (Knock-out; Methodology, applications); A brief account of Transgenic Sheep, Poultry, Fish, Cow, with value added attributes. Transgenic Plants: Resistance to diseases (Pathogen resistant-viral, fungal and bacterial); insects (Bt gene transfer); Fertilizer management- Nif gene transfer.

#### **TEXT BOOKS:**

- 1. Gupta PK (2003) Elements of Biotechnology (2nd Ed), Rastogi publication, Merrut,
- 2. Singh BD (2005) Molecular Biology and Genetic Engg, Kalyani Publishers
- 3. Brown TA (2013) Gene Cloning and DNA analysis (6th edition) Wiley-Blackwell Publications.

- 1. Glick and Pasternak (2010) Molecular Biotechnology (4th Ed.), Wiley, Washington DC
- 2. Howe, C. (2007). Contents. In Gene Cloning and Manipulation (pp. V-Vi). Cambridge: Cambridge University Press.
- 3. Primrose, Twyman and Old (2002). Principles of Gene Manipulation, (6th Ed) Blackwell Science Ltd.
- 4. Brown TA, Genomes, 3rd ed. Garland Science 2006
- 5. Watson, Caudy, Myers and Wilkowsky (2007) Recombinant DNA: Genes and Genomes (3rd Ed), WH Freeman.

| SEMESTER                     | III     |                  |           |                  |       |         |  |
|------------------------------|---------|------------------|-----------|------------------|-------|---------|--|
| YEAR                         | II      |                  |           |                  |       |         |  |
| COURSE CODE                  | 20BC23  | 01               |           |                  |       |         |  |
| TITLE OF THE COURSE          | HUMAN   | HUMAN PHYSIOLOGY |           |                  |       |         |  |
|                              | Lecture | Tutorial         | Practical | Seminar/Projects | Total | Credits |  |
| <b>SCHEME OF Instruction</b> | Hours   | Hours            | Hours     | Hours            | Hours |         |  |
|                              | 4       | 0                | 0         | 0                | 48    | 4       |  |

| Pero | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| 1    | I/I                         | 20BC1101    | BASIC BIOCHEMISTRY  |  |  |  |

- 1. To illustrate the general human physiology in terms of nutrition and energy synthesis.
- 2. To have an insight into the cellular to organ level differentiation and their related biochemical concepts

#### **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                  | Bloom's<br>Taxonomy<br>Level |
|--------|---------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | The student will understand the mechanism of action of the energy generation machinery and the organs associated with it. | L2 & L3                      |
| CO2    | The cell to organ system to organism architecture will be better understood.                                              | L4                           |

# COURSE CONTENT:

MODULE 1

Nutrition: Periode principles of a belonged diet to provide energy and putrients. Permiretery

**Nutrition:** Basic principles of a balanced diet to provide energy and nutrients. Respiratory quotient, BMR, SDA and factors affecting them. Role of carbohydrates, protein, lipid and as fuel molecules.

**Hematology:** Blood components and their functions, blood groups: the ABO system. role of hemoglobin in oxygen transport. Various buffer systems of the blood, acid base balance, factors affecting acid-base balance.

**Respiration:** Components of respiratory system: nasal cavity, trachea, pharynx, lungs, bronchi, bronchioles and alveoli and their functions.

MODULE 2 12Hrs

**Biochemistry** 

**Cardiovascular System:** Basic anatomy of the heart, Physiology of heart, blood vessels and circulation. Basic understanding of Cardiac cycle. Blood pressure and its regulation. Brief outline of cardiovascular disorder (hypertension, arteriosclerosis, myocardial infarction and congestive heart failure.

**Skeletal system:** Tissues - introduction. Extracellular matrix and its components, Bone-ultra structure, composition, cells: osteoblasts, osteocytes and osteoclasts. Bone growth, remodeling and regulation by hormones

**Muscle:** Types – smooth, striated and cardiac. Contractile and regulatory proteins of

muscle structure of actin and myosin. The sarcomere, sliding filament model of skeletal muscle contraction. Brief idea of contraction of smooth muscles.

MODULE 3 12Hrs

**Digestion:** Anatomy of GIT and accessory organs, Regulation of GIT movement, Digestion, absorption and transport of carbohydrates, lipids and proteins.

**Excretion:** Structure of nephron in brief, mechanism of urine formation: Glomerular filtration, Tubular re-absorption & Active secretion, Regulation of acid—base balance by the kidney, Acidosis and alkalosis.

**Reproduction:** Brief account of histological structure of ovary & testis. Structure & functions of male & female sex hormones. Menstrual Cycle.

MODULE 4 12Hrs

**Neurobiology:** Structure of Neurons, Physiological properties of Nerve fibers, Detailed account of impulse generation, Membrane potential, development, depolarization and repolarization. Transmission of impulse in myelinated and nonmyelinated nerve fibers. Nernst's and Goldman Equation, Nernst's potential. Synapse and mechanism of synaptic transmission: Cholinergic and adrenergic transmission, Functions of acetyl choline, GABA, dopamine and glutamate as neurotransmitters.

- 1. Textbook of Medical Physiology Guyton and Hall. Elsevier.
- 2. Human Physiology Chatterjee. Sapna Publishers.
- 3. Fundamentals of Biochemistry Deb. Central Publishers.
- 4. Medical Biochemistry Chatterjee and Shindey.
- 5. Biochemistry Das. Central Publishers.
- 6. Biochemistry Jain. Himalaya Publications.
- 7. Principles of Nutrition Swaminathan. Himalaya Publications.
- 8. Laboratory Manual for Practical Biochemistry –Hemavathi, Shivraja and Ganesh. Jaypee Publishers.

| SEMESTER              | III     |          |           |                  |        |         |
|-----------------------|---------|----------|-----------|------------------|--------|---------|
| YEAR                  | II      |          |           |                  |        |         |
| COURSE CODE           | 20GN23  | 01       |           |                  |        |         |
| TITLE OF THE COURSE   | BASIC   | HUMAN    | GENETIC   | S AND GENETIC    | ENGINE | ERING   |
|                       | Lecture | Tutorial | Practical | Seminar/Projects | Total  | Credits |
| SCHEME OF Instruction | Hours   | Hours    | Hours     | Hours            | Hours  |         |
|                       | 4       | 0        | 0         | 0                | 48     | 4       |

| Perquisite Courses (if any) |          |             |                     |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |
| -                           | -        | -           | -                   |  |  |

- To provide students with basic principles of human genetic engineering including the techniques, applications and limitations.
- To demonstrate the ability to design recombinant molecules and apply information extracted from a variety of sources including journal articles, technical bulletins, product manuals, and drug information sheet to solve problems.

## **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                 | Bloom's<br>Taxonomy<br>Level |
|-----------|----------------------------------------------------------|------------------------------|
| CO1       | The students will have knowledge of tools and strategies | L3                           |
|           | used in genetic engineering.                             |                              |
| CO2       | Understanding of applications of recombinant DNA         | L4                           |
|           | technology and genetics                                  |                              |

## **COURSE CONTENT:**

## MODULE 1 HUMAN CHROMOSOMES, INHERITANCE

14Hrs

Human Chromosomes: Normal Human Karyotype: Paris Nomenclature, karyotyping (Quantification of DNA of individual chromosomes), Pedigree studies: Symbols used in pedigree studies, Pedigree analysis & construction, Pedigree analysis for the inheritance pattern of genetic diseases.

## MODULE 2 GENETIC DISEASES AND INHERITANCE PATTERN 5Hrs

Autosomal Dominant Inheritance (Ex.- Adult polycystic kidney, Achondroplasia and Neurofibromatosis). Autosomal Recessive Inheritance (Ex.- Albinism, Sickle cell anemia, Phenylketonuria). X-linked Recessive Inheritance (Ex.- Duchenne muscular dystrophy-DMD). X-linked Dominant Inheritance (Ex.- Xg blood group). Y-linked inheritance (Holandric gene Ex.- Testes determining factor - TDF).

Multi-factorial inheritance (Ex.-Congenital malformations- Cleft lip and palate, Rheumatoid arthritis and Diabetes). Mitochondrial diseases (Ex.- Leber's heriditary optic neuropathy).

## MODULE 3 INTODUCTION TO rDNA TECHNOLOGY

14Hrs

History and fundamentals of r-DNA technology, Tools for r-DNA technology. Molecular

tools for gene cloning: Nucleases -Endo and Exonucleases - Nomenclature, Types and characteristic features. Modification of cut ends. DNA ligases and DNA Recombinases. DNA Modifying Enzymes - Alkaline phosphatase, Polynucleotide kinase, Klenow fragment, terminal nucleotidyl transferase.

## MODULE 4 VEHICLES FOR CLONING

**15Hrs** 

Properties of an ideal vector. Types: Cloning and expression vectors. Cloning vectors: Prokaryotic vectors: Plasmids- pBR322; pUC18; Bacteriophages -Lambda phage, Cosmids. Eukaryotic vectors: YAC vectors; Shuttle vectors- Yeast and E. coli. For higher plants: Integrative DNA transfer- Agrobacterium vectors-Ti plasmid-Binary and Co integrated vectors; Non integrative DNA transfer-Plant viral vectors (CaMV).

- 1. Nicholl D. S. T. An introduction to Genetic engineering (2nd ED), Cambridge University Press, 2002.
- 2. Satyanarayana U. Biotechnology, Books and Allied (P) Ltd., Kolkata, 2008.
- 3. Purohit S. S. Biotechnology Fundamentals and applications, student Edition, Jodhpur, 2003.
- 4. Sandhya M. Genetic engineering: Principles and practice, MacMillan. India Ltd. 2008
- 5. Channarayappa. Molecular Biotechnology- Principles and practices, University press (India) Private Limited, 2006.

| SEMESTER                     | III     |                   |           |                  |       |         |
|------------------------------|---------|-------------------|-----------|------------------|-------|---------|
| YEAR                         | II      |                   |           |                  |       |         |
| COURSE CODE                  | 20BS230 | )1                |           |                  |       |         |
| TITLE OF THE COURSE          | MOLEC   | MOLECULAR BIOLOGY |           |                  |       |         |
|                              | Lecture | Tutorial          | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours   | Hours             | Hours     | Hours            | Hours |         |
|                              | 4       | -                 | -         | -                | 48    | 4       |

| Perc | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- Understand the general principles of central dogma, DNA and RNA types structure and their role in cells.
- Explain the mechanisms of DNA replication, RNA synthesis and repair, various levels of gene expression, regulation and protein function.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                 | Bloom's<br>Taxonomy<br>Level |
|-----------|--------------------------------------------------------------------------|------------------------------|
| CO1       | Know the importance of recent discoveries and the                        | L1                           |
|           | applications and potential of molecular biology with these technologies. |                              |
| CO2       | Student will gain understanding of chemical and molecular                | L2                           |
|           | processes that occur in and between cell.                                |                              |

## **COURSE CONTENT:**

## MODULE 1 THE MOLECULAR BASIS OF LIFE

12Hrs

Central dogma, DNA and RNA as genetic material – experimental proof. Evidences for DNA as the genetic material- Griffith's transformation experiment, Hershey and Chase experiment, evidence for RNA as the genetic material of viruses (TMV, Retroviruses). Nucleic acids: DNA structure and types (A, B and Z model), Denaturation and renaturation kinetics of DNA, Types of RNA – mRNA, tRNA and rRNA, mi RNA and siRNA.

## MODULE 2 DNA REPLICATION AND ITS COMPONENTS

12Hrs

Replication of DNA (Conservative, Dispersive and Semi Conservative DNA replication, Meselson and Stahl experiment), theta and rolling circle model of replication. Prokaryotic and Eukaryotic – Enzymes and proteins involved in replication.

## MODULE 3 DNA TRANSCRIPTION AND ITS COMPONENTS

12Hrs

RNA polymerases, Mechanism of transcription – initiation, elongation and termination in prokaryotes and eukaryotes. Post-transcriptional modifications of Eukaryotic mRNA ( Poly A tailing, 5' capping and splicing mechanisms)

| MODULE     | 4  | TRANSLATION | AND | REGULATION | OF | <b>GENE</b> | 12Hrs |
|------------|----|-------------|-----|------------|----|-------------|-------|
| EXPRESSION | ON |             |     |            |    |             |       |

Genetic code, wobble hypothesis, Mechanism of translation in prokaryotes and eukaryotes, Post translational modification of Proteins. Regulation of Gene expression in Prokaryotes – Operon concepts, induction, repression, attenuation, examples of Lac and Trp operons. Regulation of Gene expression in Eukaryotes –galactose metabolism in yeast.

- 1. Cell & Molecular Biology by Gerald Karp, 3rd Edition, John Wiley & Sons (2009)
- 2. Molecular Biology of the Gene by James Watson et al, Pearson Education (2013)
- 3. Molecular Biology of the Cell, Bruce Alberts et al, Garland Science Publication (2007)
- 4. Principles of Biochemistry by Nelson and Cox, WH Freeman Publications (2008)
- 5. Textbook of Cell and Molecular Biology by Ajoy Paul, Books and Allied Ltd (2011).
- 6. Molecular Biology and Genetic Engineering by P K Gupta, Deep and Deep Publications (2008).
- 7. Cell Biology, Genetics, Molecular Biology, evolution and Ecology by PS Verma and VK Agarwal, S. Chand Publications (2006).

| SEMESTER              | III                                        |          |           |                  |       |         |
|-----------------------|--------------------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                  | II                                         |          |           |                  |       |         |
| COURSE CODE           | 20BT23'                                    | 71       |           |                  |       |         |
| TITLE OF THE COURSE   | TECHNIQUES IN RECOMBINANT DNA TECHNOLOGY - |          |           |                  |       |         |
|                       | LAB                                        |          |           |                  |       |         |
|                       | Lecture                                    | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF Instruction | Hours                                      | Hours    | Hours     | Hours            | Hours |         |
|                       | 0                                          | 0        | 4         | -                | -     | 2       |

| Perquisite Courses (if any) |          |             |                     |  |
|-----------------------------|----------|-------------|---------------------|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |
| -                           | -        | -           | -                   |  |

- Understand basic instrumentation and vectors used in routine cloning experiments
- To integrate the theoretical/conceptual principles with experiments
- To develop the ability amongst the students to apply modern genetic engineering techniques in industry and research.
- To enable students to work in a team with multidisciplinary approach.

## **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                            | Bloom's<br>Taxonomy<br>Level |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| CO1       | Be able to gain fundamental working knowledge of basic                              | L1                           |  |  |  |  |
|           | principles of gene cloning.                                                         |                              |  |  |  |  |
| CO2       | Critically analyse, evaluate and compile received results                           | L4                           |  |  |  |  |
| List o    | List of Laboratory/Practical Experiments activities to be conducted (if any):       |                              |  |  |  |  |
| 1.        | Extraction of DNA from plant/bacteria and animal sources(2 Unit                     | s)                           |  |  |  |  |
| 2.        | 2. Separation of DNA on agarose gel electrophoresis, Visualization of DNA (2 units) |                              |  |  |  |  |
| 3.        | Quantification of DNA by spectrophotometry or DPA method                            |                              |  |  |  |  |
| 4.        | Preparation of competent cells                                                      |                              |  |  |  |  |
| 5.        | Transformation of bacterial competent cells with plasmid DNA                        |                              |  |  |  |  |
| 6.        | Plasmid extraction                                                                  |                              |  |  |  |  |
| 7.        | Linearization of plasmid DNA                                                        |                              |  |  |  |  |

- 1. Recombinant DNA: A Short Course by JD Watson, J. Tooze and DT Kurtz. Scientific American books. USA. 1983.
- 2. Biotechnology A Laboratory Course by Becker JM, Caldwell GA, Zachgo EA. Second edition. Elsevier. 1996.

- 1. Primrose, S. B., and R. M. Twyman. Principles of gene manipulation and Genomics, Blackwell Publishing MA. USA. 2006.
- 2. From Genes to Genomes: Concepts and Applications of DNA Technology by JW Dale and M Schantz. Wiley-Blackwell Publishing. UK. 2012.
- 3. Molecular Biotechnology: Principles & Applications of Recombinant DNA Glick BR and Pasternak JJ, ASM Press. USA. 2017.

| SEMESTER                     | III     |                            |           |                  |       |         |
|------------------------------|---------|----------------------------|-----------|------------------|-------|---------|
| YEAR                         | II      |                            |           |                  |       |         |
| COURSE CODE                  | 20BC23  | 71                         |           |                  |       |         |
| TITLE OF THE COURSE          | CLINIC  | CLINICAL BIOCHEMISTRY -LAB |           |                  |       |         |
|                              | Lecture | Tutorial                   | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours   | Hours                      | Hours     | Hours            | Hours |         |
|                              | 0       | 0                          | 4         | 0                | -     | 2       |

| Perquisite Courses (if any) |          |             |                     |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |
| 1                           | NA       | NA          | NA                  |  |  |

1. To provide an advanced understanding and applied knowledge of clinical biochemistry using biological samples (Urine or Blood).

## **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                        | Bloom's<br>Taxonomy<br>Level |
|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Students will be able to perform a range of diagnostic techniques relevant to the field of laboratory medicine. | L3                           |

| relevant to the field of faboratory medicine.                       |  |
|---------------------------------------------------------------------|--|
| EXPERIMENTS/PRACTICALS:                                             |  |
| 1. Qualitative analysis of normal components of urine.              |  |
| 2. Qualitative analysis of abnormal components of urine.            |  |
| 3. Estimation of Glucose estimation by Miller's method /DNS method. |  |
| 4. Protein/DNA by UV absorption spectroscopy.                       |  |
| 5. Estimation of Protein by Folin - Ciocalteu method.               |  |
| 6. Estimation of Iron by Wong's method.                             |  |
| 7. Estimation of Phosphate by Fiske – Subbarow's method.            |  |
| 8 Estimation of Creatinine by Jaffe's method                        |  |

- 1. Practical Clinical Biochemistry, ed. Harold Varley, 4th edn. CBS Publishers (2088).
- 2. Practical Clinical Biochemistry: Methods and Interpretation, ed. Ranjna Chawla, Jaypee Brothers Medical Publishers (2096).
- 3. Practical and Clinical Biochemistry for Medical Students, ed. T.N. Pattabhiraman, Gajanna Publishers (2094).
- 4. Hawk's Physiological Chemistry, ed. Oser, 14th Edn. (2076), Tata-McGrawHill. Biochemistry, ed. Plummer Tata-McGraw Hill, (2071).

| SEMESTER              | III                                           |          |           |                  |       |         |
|-----------------------|-----------------------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                  | II                                            |          |           |                  |       |         |
| COURSE CODE           | 20GN23                                        | 71       |           |                  |       |         |
| TITLE OF THE COURSE   | BASIC HUMAN GENETICS AND GENETIC ENGINEERING- |          |           |                  |       |         |
|                       | LAB                                           |          |           |                  |       |         |
|                       | Lecture                                       | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF Instruction | Hours                                         | Hours    | Hours     | Hours            | Hours |         |
|                       | 0                                             | 0        | 4         | 0                | -     | 2       |

| Perc | quisite Cour | ses (if any) |                     |
|------|--------------|--------------|---------------------|
| #    | Sem/Year     | Course Code  | Title of the Course |
| -    | -            | -            | -                   |

- To prepare students for successful career in industry and research institutes.
- To develop the ability amongst the students to apply modern genetic engineering techniques in industry and research.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                                                                  | Bloom's<br>Taxonomy<br>Level |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Proficient in preparing human chromosomes for karyotyping analysis.                                                       | L3                           |
| CO2       | Describe gene cloning, restriction endonucleases, use<br>modern gene technologies are used to elucidate genetic<br>issues | L4                           |
| CO3       | Critically analyse, evaluate and compile received results                                                                 | L3                           |

## List of Laboratory/Practical Experiments activities to be conducted (if any):

- 1. Preparation of Human Metaphase Chromosomes
- 2. Identification of inactivated X chromosome as Barr body.
- 3. Resolution and molecular weight estimation of fragmented DNA using agarose gel electrophoresis.
- 4. Preparation of Pedigree chart of some common phenotypic characters of human.
- 5. Molecular cloning. Demonstrations:
  - i. Plasmid DNA isolation
  - ii. Restriction Digestion
- iii. DNA ligation
- iv. Preparation of competent cells and Transformation.

- 1. Jocelyn, E. K., Elliot, S. G., Stephen, T. K. (2009), Lewin's Gene X. Jones & Barlett.
- 2. Krebs, J.E., Goldstein, E.S. and Kilpatrick, S.T. (2014). Lewin's Genes XI. Jones and Bartlet India Pvt. Ltd.
- 3. Freshney, R.I. (2011). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley online library.

- 4. Primrose, S. B., and R. M. Twyman. Principles of gene manipulation and Genomics. Blackwell Publishing MA. USA. 2006.
- 5. 2. Recombinant DNA: A Short Course by JD Watson, J. Tooze and DT Kurtz. Scientific American books. USA. 1983.

| SEMESTER                     | III                   |          |           |                  |       |         |
|------------------------------|-----------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II                    |          |           |                  |       |         |
| COURSE CODE                  | 20BS230               | )2       |           |                  |       |         |
| TITLE OF THE COURSE          | ENVIRONMENTAL SCIENCE |          |           |                  |       |         |
|                              | Lecture               | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                 | Hours    | Hours     | Hours            | Hours |         |
|                              | 2                     | -        | -         | -                | 26    | 2       |

| Perc | uisite Courses | (if any)    |                     |
|------|----------------|-------------|---------------------|
| #    | Sem/Year       | Course Code | Title of the Course |
| -    | -              | -           | -                   |

- The course will offer extensive knowledge on environment and the impact it has on life
- The course equally focusses on the importance of ecological balance.
- The programme is designed to evoke awareness amongst students who seek careers in the environment sector.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                    | Bloom's<br>Taxonom<br>y Level |
|-----------|-------------------------------------------------------------|-------------------------------|
| CO        | With an understanding of environmental management,          | L2                            |
| 1         | students will be able to solve deleterious impacts on the   |                               |
|           | ecosystem.                                                  |                               |
| CO        | With a background on environmental science, graduates       | L3                            |
| 2         | have bright career opportunities in wild life conservation, |                               |
|           | and other environment sectors.                              |                               |

## **COURSE CONTENT:**

## MODULE 1 FOUNDATION ON ECOLOGY & ENVIRONMENT 10Hrs

Organizational level of ecological systems, Abiotic and biotic environment, limiting factors, adaptation, habitat and niche, concept of biosphere, population parameters, structure, growth regulation, interactions between populations, life history strategies (r and k species), the concept of carrying capacity. Structure and function of ecosystems, productivity, decomposition, energy flow, ecological efficiencies, global pattern of productivity, nutrient cycling (Carbon, Nitrogen and Phosphorus), major biomes of India and the world.

#### MODULE 2 ENVIRONMENTAL BIOGEOCHEMISTRY

6Hrs

Structure and composition of the atmosphere, radiation budgets, general circulation of the atmosphere, prevailing and adiabatic lapse rates, air masses and fronts, monsoon, vertical profiles of major and trace gases, atmospheric photochemistry, reaction of nitrogen, oxygen, ozone, chlorides etc., properties of dust and aerosols in the atmosphere.

| MODIII | F 3    | FNVIR | ONMENTAL   | <b>POLLUTION</b> |
|--------|--------|-------|------------|------------------|
|        | /F/ -7 |       | UNIVIENTAL |                  |

5Hrs

Types and major sources of air pollutants, effects of air pollutants on physico-chemical and

biological properties surrounding atmosphere, air borne diseases and their effects on health. Types and major sources of water pollutants, effects of water pollutants on physicochemical and biological properties of water bodies, water borne diseases with special reference to water pollution. Types and major sources of soil pollutants, effects of soil pollutants on physico-chemical and biological properties of soil. Major sources of noise pollution, effects of noise pollution on health, noise level standard in industrial, commercial, residential and silence zones. Radioactive and thermal pollution sources and their effects on surrounding environment.

## MODULE 4 ENVIRONMENTAL MANAGEMENT

5Hrs

Introduction and scope of environmental management, basic concepts of sustainable development, industrial ecology and recycling industry. Role of natural products and biodiversity in international trade, fundamentals of fossil fuels use, energy production and trade, energy balance and energy audit. Eco-marketing. Environmental Impact Assessment (EIA), general guidelines for the preparation of environmental impact statement (EIS).

- 1. Ramesh Vijaya K. (2005). Environmental Microbiology. MGP Publishers, Chennai.
- 2. Edward Alcamo I. (2001). Fundamentals of Microbiology, Jones and Bartlett Publishers, INC. VI Edition.
- 3. Kumar H.D. (1995). General Ecology, I Ed. Vikas Publishing House Pvt. Ltd., NewDelhi.
- 4. Pepper W. (1995). Environmental Microbiology. A.P. Publishers.
- 5. William C. Frazier and Dennis C. Westhoff. (1995). Food Microbiology, Tata McGraw-Hill Publishing Company limited, New Delhi, IVth Edition.
- 6. Odum E.P. (1971). Fundamental Ecology, 5th Ed., Saunders.
- 7. Kormondy E.J. (1962). Concepts of Ecology, Prentice Hall. 8.Singh H.R. (1989). Animal Ecology and Environmental Biology. Nagin Chand & Co. Shoban Lal (1992). Ecology.

| SEMESTER                     | IV      |          |           |                  |         |         |
|------------------------------|---------|----------|-----------|------------------|---------|---------|
| YEAR                         | II      |          |           |                  |         |         |
| COURSE CODE                  | 20BT24  | 01       |           |                  |         |         |
| TITLE OF THE COURSE          | PRINCI  | PLES OF  | ANIMAL    | AND PLANT BIO    | OTECHNO | OLOGY   |
|                              | Lecture | Tutorial | Practical | Seminar/Projects | Total   | Credits |
| <b>SCHEME OF Instruction</b> | Hours   | Hours    | Hours     | Hours            | Hours   |         |
|                              | 4       |          | -         | -                | 48      | 4       |

| Perq | Perquisite Courses (if any) |             |                     |  |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| 1    | -                           | -           | -                   |  |  |  |  |
|      |                             |             |                     |  |  |  |  |

- To acquaint the students with the basic concepts of animal and plant cell culture set up and conditions.
- To familiarize the students with knowledge on various ways to produce transgenic plants and animals with novel traits.
- To equip the student's wide area of important applications of animal biotechnology

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                          | Bloom's<br>Taxonomy<br>Level |
|-----------|-------------------------------------------------------------------|------------------------------|
| CO1       | Have understanding of basic fundamentals of animal                | L3                           |
|           | Biotechnology and its uses                                        |                              |
| CO2       | Have understanding of basic fundamentals of plant cell culture    | L3                           |
|           | conditions, media formulations, techniques and its uses.          |                              |
| CO3       | The students will learn the fundamentals of culturing animal and  | L4                           |
|           | plant cells & tissues and the modes to change and improve genetic |                              |
|           | traits of animal and plants.                                      |                              |
| CO4       | Will be equipped with the wide area of applications of            | L3                           |
|           | biotechnology in modern world.                                    |                              |

## **COURSE CONTENT:**

## MODULE 1 BASICS OF ANIMAL TISSUE CULTURE

12Hrs

Basics of animal tissue culture, Facilities in Animal Cell Culture, Media – natural and chemically defined, importance of serum in the media. Growth factors promoting proliferation of animal cells – EGF, FGF, PDGF. Stem Cell Types and its characteristics. Primary Cell Culture: Isolation of tissue – disaggregation techniques (mechanical, enzymatic), explant method Secondary Cell Culture: Transformed and continuous cell lines (Hela, CHO, BHK).

## MODULE 2 APPLICATION OF ANIMAL BIOTECHNOLOGY

11Hrs

Applications of Animal Tissue Culture: Transfection of animal cell lines, HAT selection,

Expression of cloned genes in animal cells – expression vector, over-production and downstream processing of the expressed protein, production of vaccines in animal cells, Hybridoma Technology for Monoclonal antibody production, Transgenic animals – techniques and applications (examples of mice and sheep). Basics of Tissue Engineering. Biosafety and Good Lab practices.

## MODULE 3 BASICS OF PLANT TISSUE CULTURE

11Hrs

Introduction to Plant Tissue Culture: Aseptic techniques, sterilization methods - (Steam and Dry), media and explant sterilization techniques, post sterilization care of the instruments, contaminants, components of tissue culture media, growth hormones (auxin and cytokinin), Tissue and Organ Culture: Micro-propagation, bud and meristem tip culture, stages, factors affecting micro-propagation, callus culture, cell culture, protoplast culture and fusion, organogenesis and somatic embryogenesis, Soma clonal Variants.

| MODULE 4                                                                          | 11Hrs |
|-----------------------------------------------------------------------------------|-------|
| Genetic Transformation Techniques: Transgenic plants- Agrobacterium mediated      |       |
| (Ti and Ri plasmid), physical and chemical methods of gene transfer.              | ı     |
| GM technology and Plant Trait improvement: GM Strategies for Biotic and           | ı     |
| Abiotic Stress Resistance/Tolerance, Herbicide, bacterial and fungal resistance   | ı     |
| crops. Bt cotton, Bt brinjal, Golden Rice. Application of tissue culture for crop | ı     |
| improvement in agriculture, horticulture and forestry. Edible vaccines, secondary | i     |
| metabolites (in-vitro production).                                                | 1     |
|                                                                                   |       |

#### **TEXT BOOKS:**

- 1. Singh, Gautam, Chauhan, Singla (2013) Textbook of Animal Biotechnology, TERI
- 2. Satyanarayana U (2008) Biotechnology, Books and Allied Ltd.
- 3. R Ian Freshney (2010) Culture of Animal Cells (6th Ed), Wiley-Blackwell
- 4. John Davis (2011) Animal Cell Culture Essential Methods, Wiley & Son

- HS Chawla (2009) Introduction to Plant Biotechnology (2nd Ed), Oxford and Ibh Publishing.
- Slater (2008) Plant Biotechnology genetic manipulation of plants (2nd Ed),
   Oxford Publishing.
- 3 Santosh Nagar and Madhav Aadhi (2010) Practical Book of Biotechnology and Plant Tissue Culture, S Chand Publications
- 4 B D Singh (2014) Biotechnology: Expanding horizons, Kalyani Publishers.
- 5 S.S. Bhojwani and M.K. Razdan (1996) Plant Tissue Culture- Theory and Practice, a Revised Edition (1996, Elsevier Science)

| SEMESTER                     | IV                               | IV       |           |                  |       |         |
|------------------------------|----------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II                               |          |           |                  |       |         |
| COURSE CODE                  | 20BC2401                         |          |           |                  |       |         |
| TITLE OF THE COURSE          | ENZYMOLOGY AND PROTEIN CHEMISTRY |          |           |                  |       |         |
|                              | Lecture                          | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                            | Hours    | Hours     | Hours            | Hours |         |
|                              | 4                                | 0        | 0         | 0                | 48    | 4       |

| Pero | uisite Courses | (if any)    |                     |
|------|----------------|-------------|---------------------|
| #    | Sem/Year       | Course Code | Title of the Course |
| 1    | I/I            | 19BS1207    | BASIC BIOCHEMISTRY  |

- 1. To have a comprehensive understanding about the enzymes present in different systems, and their structure and functions.
- 2. To enhance the knowledge of kinetics, active sites and mechanism of action of different classes of enzymes from different biological systems.

## **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                                                                                                                  | Bloom's<br>Taxonomy<br>Level |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Will be able to understand the biological significance of enzymes, their critical roles in different systems and their efficiency in biological reactions.                                                                                | L2 & L3                      |
| CO1    | Will be able to apply skills/knowledge to calculate different kinetic parameter of enzymes and also the will be equipped with information about the enzyme technologies and enzymatic assays and their medicinal/industrial applications. | L4                           |

## **COURSE CONTENT:**

MODULE 1 11Hrs

Introduction, classification & nomenclature of enzymes; Active site, Lock & key model, induced fit model and strain/TS theory-taking lysozyme and chymotrypsin as examples; Enzyme specificity- bond, group, absolute and stereo-chemical specificity; Enzyme catalysis: Proximity & Orientation effect; Regulatory enzymes: - Allosteric (ATCase) and covalently modulated (Glycogen phosphorylase) enzymes, MODULEs-Katal & IU; Effect of physical and chemical parameters on enzyme activity with examples.

MODULE 2 11Hrs

**Enzyme Kinetics:** Importance of measuring initial velocities, Derivation of Michaelis-Menten equation, Single & double reciprocal plots, Inhibition (Competitive, Noncompetitive & Uncompetitive) on Lineweaver-Burke plots; Importance of Kcat / Km. Bisubstrate reactions – brief introduction.

**Enzyme Assay and Purification:** Enzyme assay, Specific activity; Enzyme isolation and purification, criteria for enzyme purity; Isoenzymes; Coenzymes and their significance. Clinical and Industrial applications of enzymes.

MODULE 3 11Hrs

Classification based on composition, shape and function; Peptide bond; Ramachandran Plot; Structural organization: primary, secondary, tertiary and quaternary structures; Structure of Haemoglobin, Immunoglobulin, Collagen, myosin and Keratin; Denaturation of proteins and melting temperature; Hofmeister series; Protein assays and quantification methods; Peptide synthesis.

MODULE 4 11Hrs

**Protein purification & Proteomics:** Vectors and hosts, downstream processing; Protein Expression; Isolation and purification of proteins (non-enzymatic), Characterization through gel permeation, ion exchange and affinity chromatography; Sequence determination by Sanger and Edman degradation methods; Protein fragmentation and Peptide purification; Derivatization of peptides and mass spectroscopy of peptides; mass determination; Applications of proteomics.

- 1. Principles of Biochemistry Lehninger, Nelson and Cox. Freeman Publishers, 6th Ed
- 2. Principles of Biochemistry Zubay, Parson and Vance. Brown Publishers, 1st Ed.
- 3. Biochemistry Berg, Tymoczko and Stryer. Freeman Publishers, 5th Ed.
- 4. Biochemistry Voet and Voet. Wiley & Sons. 4th Ed
- 5. Biochemistry with medical correlations Devlin. Wiley & Sons, 7th Ed
- 6. Protein Protocols Handbook Walker. Humana Press.
- 7. Protein Purification Applications Roe. Oxford University Press.
- 8. Introductory Practical Biochemistry- Sawhney and Singh. Narosa Publishing house.

| SEMESTER                     | IV               | IV       |           |                  |       |         |
|------------------------------|------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II               | II       |           |                  |       |         |
| COURSE CODE                  | 20GN2401         |          |           |                  |       |         |
| TITLE OF THE COURSE          | APPLIED GENETICS |          |           |                  |       |         |
|                              | Lecture          | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours            | Hours    | Hours     | Hours            | Hours |         |
|                              | 4                | 0        | 0         | 0                | 48    | 4       |

| Perc | Perquisite Courses (if any) |             |                     |  |  |
|------|-----------------------------|-------------|---------------------|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |
| -    | -                           | -           | -                   |  |  |

- 1. To go through basic and specialized knowledge and understanding the aspects of genetics is essential to applying concepts in Genetics.
- 2. To take the students through the basics of applied genetics and disease gene mapping.
- 3. To teach various techniques that students can apply in their future career in biological research as well as in industry.

## **COURSE OUTCOMES:**

| CO  | 0.4                                                         | Bloom's            |
|-----|-------------------------------------------------------------|--------------------|
| No. | Outcomes                                                    | Taxonom<br>v Level |
| CO  | Applied Genetics deals with the application of Genetics in  | •                  |
| 1   | Molecular Biology, Developmental Biology, Medicine,         |                    |
|     | Pharmaceutical Industries, Medical Sciences, Agriculture    |                    |
|     | and Horticulture based industries etc.                      |                    |
| CO  | Students will have a deeper understanding of several facets | L3                 |
| 2   | of applied genetics.                                        |                    |
| CO  | Students will be equipped to pursue a fitting career in     | L4                 |
| 3   | academia or industry.                                       |                    |
|     |                                                             |                    |

## **COURSE CONTENT:**

## MODULE 1 GENETIC RESOURCES AND BIODIVERSITY 8Hrs

Germplasm, classification, Germplasm activities, and organizations associated with germplasm (NBPGR, IBPGR). Genetic Erosion, biodiversity, centres of Diversity, Vavilovian Centres of Diversity, Law of Parallelism, Gene sanctuaries, Gene bank and Cryopreservation.

## MODULE 2 INTRODUCTION TO TISSUE CULTURE

7Hrs

Types of cell culture media for plants and animals; Preparation and sterilization of cell culture media

ANIMAL CELL CULTURES TECHNIQUES: History of animal cell culture; Different tissue culture techniques; Types of primary culture; Chicken embryo, fibroblast culture; Secondary culture; Trypsinization; Cell separation; Continuous cell lines; Suspension culture; Organ culture; estimation of cell number;, Characterization and maintenance of cell lines, Cryopreservation; Application of animal cell culture for in vitro testing of drugs.

PLANT CELL CULTURES TECHNIQUES: Embryo, Anther and Ovary cultures, Shoot and Root Meristem cultures, Callus culture from undifferentiated cells, Protoplast culture. Economic benefits of Tissue Culture: Resistance to pests and Pathogens, Improvement in Nutritive value etc.

## MODULE 3 HETEROSIS IN ANIMALS AND PLANTS

15Hrs

Introduction to Heterosis and characteristics. Introduction to animal breeds, inbreeding, grading, cross breeding. Fish breeding: Selection, Induced Polyploidy, Gynogenesis and Androgenesis, Inbreeding. Production of breeds: crossing of inbred lines for commercial production. Breeding strategies for improvement of livestock for milk, meat, wool production. Breeding strategies for improvement of Poultry.

Introduction to plants breeding: Estimation of heterosis - Heterobeltosis, Economic heterosis, Standard heterosis. Hybridization techniques- intergeneric and interspecific hybridization. Identification of hybrid plants. Inbreeding depression. Hybrid vigor exploitation in Rice, Tomato.

# MODULE 4 GENETICS IN MEDICAL & INDUSTRIAL 10Hrs BIOTECHNOLOGY

Production of recombinant Insulin, Interferon and Human Growth hormone (HGH). Vaccines-Hepatitis B vaccine. Preparation of DNA probes, Monoclonal antibodies and Diagnostic kits (Typhoid, Syphilis). DNA Fingerprinting: Methodology of DNA fingerprinting. Molecular markers-RFLP & RAPD, Micro satellite, SNPs, STR. Applications with examples in forensic science, medico legal aspects, wild life crying

## MODULE 5 BIOINFORMATICS

10Hrs

Introduction to Bioinformatics Databases, Nucleic acid Sequence databases (NCBI, EBI), Protein Sequence Databases (UNIPROT, SWISS-PROT), Structure Databases (PDB). Applications of bioinformatics.

- 1. Alcamo I.E. DNA Technology. The Awesome Skill 2nd edition. Harcourt / Academic press. 2000.
- 2. Gupta P.K. Elements of Biotechnology. Rastogi. 2002-2003.
- 3. Singh B. D. Biotechnology. Kalyani Publication. 2002.
- 4. Glide B.R. and Pasternak, J. J. Molecular Biotechnology, 2nd edition. AS press, Washington. 1998.
- 5. Nicholl D. S. T. An Introduction to Genetic Engineering Second Edition. Cambridge University Press. 2002.
- 6. Razdan M. K. An Introduction to plant tissue culture. Oxford & IBH, New Delhi. 1993.
- 7. Lasley. J.E. Genetics of Livestock Improvement. Prentice India.
- 8. Animal cell culture Techniques by Ian Freshney, Wiley-Liss.
- 9. Animal Cell Culture Practical Approach BY Ed. John R.W. Masters, 3rd Edition, Oxford University Press.
- 10. Animal Cell Culture Techniques BY Ed. Martin Clynes,. Springer

| SEMESTER                     | IV                      | IV       |           |                  |       |         |
|------------------------------|-------------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II                      | II       |           |                  |       |         |
| COURSE CODE                  | 20BS2401                |          |           |                  |       |         |
| TITLE OF THE COURSE          | GENOMICS AND PROTEOMICS |          |           |                  |       |         |
|                              | Lecture                 | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                   | Hours    | Hours     | Hours            | Hours |         |
|                              | 4                       | -        | -         | -                | 48    | 4       |

| Perc | Perquisite Courses (if any) |             |                     |  |  |
|------|-----------------------------|-------------|---------------------|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |
| -    | -                           | -           | -                   |  |  |

- To go through basic and specialized knowledge and understanding the aspects of genomics and proteomics is essential to understanding Genetics and its architecture.
- To take the students through foundations in genomics and disease gene mapping.
- To teach various approaches to investigating genomics and proteomics that students can apply in their future career in biological research as well as in industry.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                                                                                                                    | Bloom's<br>Taxonomy<br>Level |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Student will be able to understand how genomes are organised and contemplate on the mapping of monogenic and polygenic traits.                                              | L2                           |
| CO2       | 1 30                                                                                                                                                                        | L3                           |
| CO3       | In conjunction with the practical in bioinformatics, the students should be able to take up biological research as well as find placement in the relevant biotech industry. | L3                           |

| COURSE CONTENT:                                                                 |           |
|---------------------------------------------------------------------------------|-----------|
|                                                                                 |           |
| MODULE 1 PROKARYOTIC AND EUKARYOTIC GENOME                                      | 8Hrs      |
| ORGANIZATION                                                                    |           |
| Prokaryotes: Bacteria and Bacteriophages. Eukaryotic nuclear genomes: Arabidops | is, rice, |
| yeast, Drosophila, C. elegans and mouse genome. Eukaryotic organelle gen        | omes -    |
| Chloroplast and Mitochondria.                                                   |           |
|                                                                                 |           |
| MODULE 2 GENOME MAPPING TECHNIQUES                                              | 8Hrs      |
| Genetic mapping: Cross breeding and pedigree analysis, DNA markers – RFLPs,     | CCI Da    |
|                                                                                 | SSLPS,    |
| SNPs.                                                                           | SSLPS,    |
|                                                                                 | SSLPS,    |
| SNPs.                                                                           | SSLPS,    |
| SNPs.                                                                           | 8Hrs      |
| SNPs. Physical mapping: Restriction mapping, Fluorescent in situ hybridization. | 8Hrs      |

base composition of nuclear genome, Gene density, CpG islands, RNA-encoding genes, Functionally identical genes, Diversity in size and organization of genes.

## **MODULE 4 COMPARATIVE GENOMICS**

5Hrs

Whole genome analysis, Genome sequence, micro assay, molecular phylogeny, C-value, number of genes and complexity of genomes, Conservation and diversity of genomes, Comparative genomics as an aid to gene mapping and study of human disease genes. Comparative genomics of mitochondria and chloroplast genomes.

## **MODULE 5 PROTEIN PROFILING**

5Hrs

Prediction of primary, secondary and tertiary structure of proteins- SCOP, DALIDD, CATH classification. Determining protein structure, Homology modelling. Introduction to proteome and proteomics, protein separation and analysis using 2D Gel Electrophoresis, Liquid chromatography, Mass spectrometry, Interacting proteins by phage display and Yeast two hybrid system.

- 1. T.A. Brown, Genomes, Bios, 2002.
- 2. Coleman and Tsongalis, Molecular Diagnosis, Humana, 1997.
- 3. Dale and Schartz, From Genes to Genomes, Wiley, 2003.
- 4. Dunham, I., Genome Mapping and sequencing. Horizon Scientific. 2003.
- 5. Hawley and Mori, The Human Genome, Academic, 1999.
- 6. Lewis, Human Genetics, WCB, 1999.
- 7. Liebler, Introduction to Proteomics, Humana, 2002.

| SEMESTER                     | IV                             | IV       |                |                  |       |         |
|------------------------------|--------------------------------|----------|----------------|------------------|-------|---------|
| YEAR                         | II                             | II       |                |                  |       |         |
| COURSE CODE                  | 20BT24                         | 20BT2471 |                |                  |       |         |
| TITLE OF THE COURSE          | TECHNIQUES IN ANIMAL AND PLANT |          |                |                  |       |         |
|                              | BIOTE                          | CHNOLO   | <b>GY- LAB</b> |                  |       |         |
|                              | Lecture                        | Tutorial | Practical      | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                          | Hours    | Hours          | Hours            | Hours |         |
|                              |                                |          | 4              | -                | 36    | 2       |

| Prer | Prerequisite Courses (if any) |             |                     |  |  |
|------|-------------------------------|-------------|---------------------|--|--|
| #    | Sem/Year                      | Course Code | Title of the Course |  |  |
| 1    | -                             | -           | -                   |  |  |
|      |                               |             |                     |  |  |

- To acquaint the student with the fundamental practical knowledge of the laboratory set up.
- To acquaint the student with basic techniques to use cell culture.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                           | Bloom's<br>Taxonomy<br>Level |
|-----------|--------------------------------------------------------------------|------------------------------|
| CO1       | The course will help in making the students learn basic knowledge  | L3                           |
|           | of the plant and animal tissue culture laboratory.                 |                              |
| CO2       | The course will help in making the students learn basic techniques | L3                           |
|           | for plant and animal tissue culture.                               |                              |

## List of Laboratory/Practical Experiments activities to be conducted (if any):

- 1. Introduction to instruments and laboratory set up for animal biotechnology
- 2. Preparation of media for animal cell culture
- 3. Isolation of liver parenchyma cells by mechanical method and set up primary culture.
- 4. Determination of the concentration of viable cells in a suspension by Hemocytometer counting (trypan blue)
- 5. Plant tissue culture laboratory organization and instruments.
- 6. Preparation of plant tissue culture media MS media
- 7. Aseptic techniques and surface sterilization of explants
- 8. 4 hrs Establishment of callus culture, subculture of callus
- 9. Production of synthetic seeds.

- 1 John Davis (2011) Animal Cell Culture Essential Methods, Wiley & Sons
- 2 Santosh Nagar and MadhavAadhi (2010) Practical Book of Biotechnology and Plant Tissue Culture, S Chand Publications
- 3 HS Chawla (2009) Introduction to Plant Biotechnology (2nd Ed), Oxford and Ibh Publishing

4 S. Chand Practical book of biotechnology and plant tissue culture, S Chand & Emp; Company

- 1. SD Purohit (2012) Introduction to Plant Cell, Tissue and Organ Culture, Prentice Hall India Learning Pvt Ltd.
- 2. R Ian Freshney (2010) Culture of Animal Cells (6th Ed), Wiley-Blackwell.

| SEMESTER                     | IV              |          |           |                  |       |         |
|------------------------------|-----------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II              |          |           |                  |       |         |
| COURSE CODE                  | 20BC2471        |          |           |                  |       |         |
| TITLE OF THE COURSE          | ENZYMOLOGY -LAB |          |           |                  |       |         |
|                              | Lecture         | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours           | Hours    | Hours     | Hours            | Hours |         |
|                              | 0               | 0        | 4         | 0                | 40    | 2       |

| Perg | Perquisite Courses (if any) |             |                     |  |  |
|------|-----------------------------|-------------|---------------------|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |
| 1    | -                           | -           | -                   |  |  |

- 1. To train the students to design the enzymatic assays and learn the calculation of kinetic parameters of the enzymes.
- 2. To learn isolation, handling and quantification of enzymes from biological samples and to train them to carry out enzymatic assays and interpret the results.

## **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                                                                     | Bloom's<br>Taxonomy<br>Level |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1    | Students will be able to interpret the kinetic parameters of the enzymes and assay results.                                                                  | L3                           |
| CO2    | Students will be able to design and carry out the enzymatic assays and will gain the practical knowledge about the mechanism of action of different enzymes. | L4                           |

## **EXPERIMENTS/PRACTICALS:**

- 1 .Introduction to enzymology Lab and product curve determination
- 2. Isolation of enzymes (amylase/phosphatase) from biological source and activity determination through time curve.
- 3. Determination of kinetic constants through LB plot
- 4. Effect of pH on enzyme activity
- 5. Effect of temperature on enzyme activity
- 6. Determination of Arrhenius constant
- 7. Effect of enzyme dilution on enzyme activity
- 8. Effect of activators and inhibitors on enzyme activity
- 9. Immobilization of enzyme using calcium alginate.

- 1. Practical enzymology Hans Bisswanger, Wiley-VCH, 2019, 3 rd Ed
- 2. Introductory Practical Biochemistry- Sawhney and Singh. Narosa Publishing house 2001, 1st Ed

- 3. Principles and Techniques of Practical Biochemistry Wilson, Wilson and Walker, Cambridge University Press 2000, revised Ed
- 4. Introduction to practical Biochemistry, Plummer, Tata McGraw-Hill Education 2001, 2nd Ed
- 5. Basics of Enzyme Immobilization Alka Dwevedi, Springer International Publishing, 2016, 1 st Ed.

| YEAR                         | IV       |          |           |                  |       |         |
|------------------------------|----------|----------|-----------|------------------|-------|---------|
| COURSE CODE                  | 20GN2471 |          |           |                  |       |         |
| TITLE OF THE COURSE          | APPLIE   | ED GENE  | TICS -LA  | В                |       |         |
|                              | Lecture  | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours    | Hours    | Hours     | Hours            | Hours |         |
|                              | 0        | 0        | 4         | 0                | -     | 2       |

| Perc | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- Experiments will give emphasis on current methods and applications of genetic manipulation in plants and crops.
- Through the use of transgenics, one can produce plants with desired traits and even increased yields.

## **COURSE OUTCOMES:**

| CO   |                                                            | Bloom's  |
|------|------------------------------------------------------------|----------|
| No.  | Outcomes                                                   | Taxonomy |
| 140. |                                                            | Level    |
| CO1  | After being introduced to the topics students will cover   | L3       |
|      | 'methods available for plant transformation through        |          |
|      | Agrobacterium mediated.                                    |          |
| CO2  | Students will also study about the role of precise genome  | L3       |
|      | modification in crops, role of vectors and markers in gene |          |
|      | expressions.                                               |          |
| CO3  | The students are expected to read, research and discuss    | L4       |
|      | papers related to the topic                                |          |

## List of Laboratory/Practical Experiments activities to be conducted (if any):

- 1. Tissue culture techniques:
  - Sterilization
  - Explants preparation
  - Media Composition and preparation
  - Culturing of all kinds of explants for callus induction, multiple shoot proliferation.
- 2. Synthetic seed preparation
- 3. Study of different techniques in plant hybridization
- 4. Study of pollen fertility
  - 5. Study of diagnostic kits WIDAL & VDRL
- 6. Study of hybrid plants Rice, Cotton, Chilly, and Tomato.
- 7. Study of hybrid animals Poultry, dairy, fishery.
- 8. Homology sequence analysis using Blast and Fasta.

- 1. Pasternak, An Introduction to Molecular Human Genetics, Fritzgerald, 2000.
- 2. Primrose and Twyman, Principles of Genome Analysis & Genomics, Blackwell, 2003.

- 3. Razdan M. K. An Introduction to plant tissue culture. Oxford & IBH, New Delhi. 1993
- 4. Ravishanker G.A. and Venkataraman L.V. Biotechnology Application of Plant Tissue and cell culture. BH Publications. 1997.

| SEMESTER                     | IV                |          |           |                  |       |         |
|------------------------------|-------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | II                |          |           |                  |       |         |
| COURSE CODE                  | 20BS2402          |          |           |                  |       |         |
| TITLE OF THE COURSE          | BIOETHICS AND IPR |          |           |                  |       |         |
|                              | Lecture           | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours             | Hours    | Hours     | Hours            | Hours |         |
|                              | 2                 | -        | -         | -                | 26    | 2       |

| Perc | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- To introduce the students to the concepts of biosafety regulatory frameworks concerning genetically modified organisms at national and International levels
- To give elementary essential concepts of Bioethics, IPR and patent laws.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                                                                  | Bloom's<br>Taxonomy<br>Level |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Student should develop basic understanding of the concepts of Biosafety, regulations concerning GMOs IPR and patent laws. | L2                           |
| CO2       | This course should generate interest for avenues for pursuing higher studies and careers in these areas.                  | L2                           |
| CO3       | General knowledge should create awareness necessary for higher studies in biotechnological fields.                        | L2                           |

## **COURSE CONTENT:**

# MODULE 1 : BIOSAFETY-REGULATORY FRAMEWORK FOR GMO's | 8Hrs IN INDIA

Regulatory framework in India governing GMOs-Recombinant DNA Advisory Committee (RDAC), Institutional Biosafety Committee (IBC), Review Committee on Genetic Manipulation, Genetic Engineering Approval Committee (GEAC), Recombinant DNA Guidelines (1990), Revised Guidelines for Research in Transgenic Plants (1998), Seed Policy (2002), Prevention Food Adulteration Act (1955), The Food Safety and Standards Bill (2005), Regulation for Import of GM Products Under Foreign Trade Policy (2006-2007), National Environment Policy (2006). Rules for the manufacture, use/import/export and storage of hazardous microorganisms/ genetically engineered organisms or cells (Ministry of Environment and Forests Notification, 1989).

## MODULE 2 BIOSAFETY-REGULATORY FRAMEWORK FOR GMO'S 6Hrs AT INTERNATIONAL LEVEL

Convention of Biological Diversity (1992) – Cartagena Protocol on Biosafety – Objectives and salient features of Cartagena Protocol – Advanced Information Agreement (AIA) procedure – procedures for GMOs intended for direct use-risk assessment-risk

management-handling, transport, packaging and identification of GMOs- Biosafety Clearing House-unintentional transboundary movement of GMOs-Benefits of becoming a party to the Cartagena Protocol- status of implementation in India.

## **MODULE 3 BIOETHICS**

4Hrs

What is bioethics- The legal and socioeconomic impacts of biotechnology - Public education of the process of biotechnology involved in generating new forms of life for informed decision-making – ethical concerns of biotechnology research and innovation.

## MODULE 4 INTELLECTUAL PROPERTY RIGHTS

3Hrs

Intellectual property rights-TRIPS, GATT-International conventions patents and methods of application of patents-Legal Implications-Biodiversity and farmer rights.

## **MODULE 5 PATENTS AND PATENT LAWS**

5Hrs

Objectives of the patent system - Basic principles and general requirements of patent law-biotechnological inventions and patent law-Legal Development-Patentable subjects and protection in biotechnology-The patenting living organisms.

- 1. Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi.
- 2. Ganguli Prabuddha Gearing up for Patents. The Indian Scenario", Universities Press (1998)
- 3. Ganguli Prabuddha "Intellectual Property Rights--Unleashing the Knowledge Economy", Tata McGrawHill (2001)
- 4. Ganguli Prabuddha and Jabade Siddharth, "Nanotechnology Intellectual Property Rights. Research, Design, and Commercialisation", CRC Press, Taylor and Francis Group, USA (2012)
- 5. Beyond Intellectual Property: Toward Traditional Resource Rights for Indigenous Peoples and Local CommMODULEies [Paperback], Darrell A. Posey and Graham Dutfield, IDRC Books; annotated edition (June 1996).
- 6. F. H. Erbisch and K. M. Maredia. Intellectual property rights in agricultural Biotechnology, University Press.
- 7. Sivamiah Shantharam, Jane F. Montegomery. Biotechnology, Biosafety and Biodiversity, Oxford & IBH Publ. New Delhi.
- 8. Tutelyal, VA. Genetically modified Food Sources, Safety Assessment and Control, Academic Press an Imprint of Elsevier, New Delhi.
- 9. Jecker Nany S, Johsen Albert, Perlman, Robert A. Bioethics: An Introduction to the History Methods and Practice, John & Bartlett, New Delhi.
- 10. Sharma, HC Dhillon, MK, Sahrawat, KN. Environmental Safety of Biotech and Conventional IPM Technology, Stadium Press LLC. USA.
- 11. Jecker Nany S, Jones & Barlet Bioethics: An Introduction to the History Methods and Practice, New Delhi
- 12. Sathish MK Bioethics and Biosafety, IK International.

| SEMESTER                     | V                          | V        |           |                  |       |         |
|------------------------------|----------------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | III                        | III      |           |                  |       |         |
| COURSE CODE                  | 20BT3501                   |          |           |                  |       |         |
| TITLE OF THE COURSE          | FERMENTATION BIOTECHNOLOGY |          |           |                  |       |         |
|                              | Lecture                    | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                      | Hours    | Hours     | Hours            | Hours |         |
|                              | 4                          | -        | -         | -                | 44    | 4       |

| Perg | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- 1. To impart basic understanding of principles and key concepts relevant to Fermentation biotechnology.
- 2. To familiarize students with downstream processing and production of important microbial products.

## **COURSE OUTCOMES:**

| CO No. | Outcomes                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| CO1    | Student will be aware of fermentation process, types of fermentation media and strateg industrially important strains |
| CO2    | The course will enable the student to apply the knowledge in various asp biotechnology processes                      |

| COURSE CONTENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| MODULE 1 INTRODUCTION TO FERMENTATION TECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                     | 11Hrs |  |
| History, Scope and development of fermentation technology, Isolation and Screening of Industrially important microorganisms-primary and secondary screening, Stain improvement: Mutation, Mutant selection, Recombination, Recombinant DNA technology, Preservation of Industrially important microorganisms. Culture collection centers.                                                                                                                            |       |  |
| MODULE 2 FERMENTATION PROCESS AND FERMENTER                                                                                                                                                                                                                                                                                                                                                                                                                          | 11Hrs |  |
| Types of fermentation -Batch, fed-batch and continuous fermentation. Surface, submerged and solid-state fermentation. Different parameters affecting fermentation - pH, temperature, dissolved oxygen, foaming and aeration. Basic component and design of typical fermenter. Type fermenter-Laboratory, pilot- scale and production fermenters. Constantly stirred tank fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and air-lift fermenter. |       |  |
| MODULE 3 UPSTREAM AND DOWNSTREAM PROCESSING                                                                                                                                                                                                                                                                                                                                                                                                                          | 11Hrs |  |

**Upstream processing:** Formulation of fermentation media. Nutrients: growth factors, carbon, nitrogen, mineral sources, buffers, inhibitors, precursors, inducers, oxygen requirements, antifoam agents and others. Methods of sterilization and inoculum preparation.

**Downstream processing:** Steps in recovery and purification of fermented products. Solid matter, Foam separation, Precipitation, Filtration, Centrifugation, Cell disruption, Liquid-Liquid extraction, Solvent recovery, chromatography, Drying, Crystallization, Whole broth processing, Effluent treatment.

## MODULE 4 INDUSTRIAL BIOPROCESSING

11Hrs

Production of alcohol beverages (wine and beer), organic acid (citric acid), antibiotics (penicillin), amino acids (glutamic acid), Vitamin (Vitamin B12), enzyme (amylase), hormone (Insulin), fermented food (yoghurt, cheese), Single Cell Protein (SCP).

- 1. Jackson AT., Bioprocess Engineering in Biotechnology, Prentice Hall, Engelwood Cliffs, 2091.
- 2. Shuler ML and Kargi F., Bioprocess Engineering: Basic concepts, 2nd Edition, Prentice Hall, Engelwood Cliffs, 2002.
- 3 Stanbury RF and Whitaker A., Principles of Fermentation Technology, Pergamon Press, Oxford, 2097.
- 4 Mansi EMTEL, Bryle CFA. Fermentation Microbiology and Biotechnology, (2nd Ed). Taylor & Francis Ltd, UK, 2007.
- 5 Colin Ratledge and Bjorn Kristiansen, Basic Biotechnology (2nd Ed.) Cambridge University Press. 2002.
- 6 Prescott, Sc and Dunn, C. Industrial Microbiology, McGraw Hill, New York. 2084
- Michael, L. Shulers and Fikret Kargi. Bioprocess Engineering: Basic concepts (2nd Ed.) Prientice Hall Publishers. 2001 8. Paulins, M. D. Bioprocess Engineering Principles. John Wiley Publishers. 2003

| SEMESTER            | V       |          |           |                  |       |         |
|---------------------|---------|----------|-----------|------------------|-------|---------|
| YEAR                | III     |          |           |                  |       |         |
| COURSE CODE         | 20BC35  | 01       |           |                  |       |         |
| TITLE OF THE COURSE | METAB   | OLISM    |           |                  |       |         |
| SCHEME OF           | Lecture | Tutorial | Practical | Seminar/Projects | Total | Credits |
| INSTRUCTION         | Hours   | Hours    | Hours     | Hours            | Hours |         |
|                     | 4       | -        | -         | -                | 44    | 4       |

|   | Perquisite Courses (if any) |             |                     |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| - | -                           | -           | -                   |  |  |  |

- To enhance the comprehensive understanding of biochemical processes/metabolic pathways in the living systems, particularly about the human system.
- Educate the students about the concepts of nutrition, pathophysiology and inborn errors associated with the metabolism.

| COURSE | COURSE OUTCOMES:                                                                                                                                                               |                              |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| CO No. | OUTCOMES                                                                                                                                                                       | BLOOM'S<br>TAXONOMY<br>LEVEL |  |  |  |  |  |  |
| CO1    | Student will know how the biomolecules play a role in energy production/storage which is an absolute necessity to sustain life.                                                | L3                           |  |  |  |  |  |  |
| CO2    | Students will have a greater understanding of how the homeostasis of a body is maintained and a slight change in the system could tip the balance which could lead to disease. | L4                           |  |  |  |  |  |  |
| CO3    | Students will have an idea as to how hormones control the physiology of an organism via signaling mechanisms.                                                                  | L4                           |  |  |  |  |  |  |
| CO4    | The students will be able to comprehend the importance of proper diet and nutrition and diseases/disorders associated with improper diet.                                      | L4                           |  |  |  |  |  |  |

#### **COURSE CONTENT:**

#### MODULE 1 CARBOHYDRATE METABOLISM

11 Hrs

Introduction to anabolic, catabolic, amphibolic pathways and intermediary metabolism. Glycolytic pathway; energetics and regulation, aerobic and anaerobic fates of pyruvate, entry of sugars other than glucose into metabolism, Gluconeogenesis, Cori cycle, TCA cycle. Degradation, synthesis and regulation of glycogen. Disorders of Carbohydrate Metabolism- Diabetes mellitus, glycogen storage disorders and lactose intolerance.

| MODUL | .E. 2           | LIPID                            | MET      | A RAT | ISM      |
|-------|-----------------|----------------------------------|----------|-------|----------|
| MODUL | <i>. ב</i> יינו | $\mathbf{L}\mathbf{H}\mathbf{H}$ | TATE I V | ador  | 71/2/1/1 |

11 Hrs

Oxidation of fatty acid  $-\alpha$ ,  $\beta$  and  $\omega$  types,  $\beta$ -oxidation of even number saturated fatty acids. Energetics of  $\beta$ -oxidation. Schematic representation of biosynthesis of even number saturated fatty acids and cholesterol biosynthesis. Metabolism of ketone bodies with physiological significance. Fatty acid biosynthesis, chain elongation and desaturation. Biosynthesis of triacylglycerol, phospholipids and sphingolipids, sphingolipid storage disorders. Regulation of cholesterol metabolism; Biochemistry of obesity, atherosclerosis and hypercholesterolemia; synthesis of prostaglandins and related compounds.

# MODULE 3 METABOLISM OF AMINO ACIDS AND PEPTIDES

11 Hrs

Biosynthesis of physiologically active amines; serotonin, histamine, dopamine, norepinephrine and epinephrine. General mechanisms of amino acid metabolism and regulations: Role of cofactors; PLP and THF in amino acid metabolism. Deamination, transamination, decarboxylation de-sulphuration process. Urea Cycle and its regulation; Synthesis and degradation of Basic and Aromatic amino acids and their Regulation. In born errors of amino acid degradation; Phenyl Ketonuria, alkaptonuria, maple syrup urine. Introduction to bioactive peptides; Structure, localization and mechanism of action ofleptin, ghrelin, neuropeptides, enkephalin, angiotensin, defensin, vasopressin and oxytocin and associated disorders.

#### MODULE 4 METABOLISM OF NUCLEIC ACIDS

**11 Hrs** 

Synthesis of purine and pyrimidine nucleotides – the de novo and the salvage pathway and their regulation. Degradation of purine and pyrimidines and disorders associated with degradation: Lesch-Nyhan syndrome, Gout, SCID, adenosine deaminase deficiency.

#### **TEXT BOOKS/REFERANCES:**

- 1. Biochemistry; Voet, D. and Voet, J.G. [Eds.] 3rdEd. John Wiley and Sons(2099).
- 2. Lehninger- Principles of Biochemistry; DL Nelson and MM Cox [Eds), 6th Edn. Macmillan Publications (2012).
- 3. Biochemistry VI Edition; Jeremy M Berg, John L Toymoczko and LubertStryer, W H Freeman and Co. (2006).
- 4. Textbook of Biochemistry with Clinical Corrections Thomas M. Devlin, John Wiley & Sons; 7th edition (22 January 2010)
- 5. Biochemistry of Foods, Eskin, Elsevier (2012).
- 6. Biochemistry and Molecular Biology; 5thEd. D. Papachristodoulou, A. Snape, W.H. Elliott, and D. C. Elliott, Oxford University Press (2014).
- 7. Harpers Illustrated Biochemistry; 30th Ed. V.W. Rodwell, D. Bender, K.M. Botham, P.
  - J. Kennelly, P. A. Weil (2015)

| SEMESTER            | V                             |          |           |                  |       |         |
|---------------------|-------------------------------|----------|-----------|------------------|-------|---------|
| YEAR                | III                           |          |           |                  |       |         |
| COURSE CODE         | 20GN35                        | 01       |           |                  |       |         |
| TITLE OF THE COURSE | POPUL                         | ATION AN | ND EVOLU  | TIONARY GENE     | TICS  |         |
| SCHEME OF           | Lecture                       | Tutorial | Practical | Seminar/Projects | Total | Credits |
| INSTRUCTION         | Hours Hours Hours Hours Hours |          |           |                  |       |         |
|                     | 4                             | -        | -         | -                | 44    | 4       |

|   | Perquisite Courses (if any) |             |                     |  |  |  |
|---|-----------------------------|-------------|---------------------|--|--|--|
| # | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| - | -                           | -           | -                   |  |  |  |

- To make student understand the forces that have an impact on levels of genetic variations in natural and/or experimental populations for both qualitative and quantitative traits.
- To make the students familiar with different types of DNA markers and the range of tools for their detection to enable advanced studies on molecular population genetics.

| COURSE OUTCOMES: |                                                                                                                 |                              |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| CO No.           | OUTCOMES                                                                                                        | BLOOM'S<br>TAXONOMY<br>LEVEL |  |  |  |  |  |
| CO1              | This course will give students exposure towards understanding population health and disease susceptibility.     | L3                           |  |  |  |  |  |
| CO2              | This course will be helpful to the students to conceptualize the existence of genetic variation and speciation. | L4                           |  |  |  |  |  |

# COURSE CONTENT: MODULE 1 INTRODUCTION TO POPULATION GENETICS 11 Hrs

Mendelian Population and scope of population genetics. Gene and genotype frequencies, mating patterns, Hardy-Weinberg principle, heterozygotes, extension of H-W principle to multiple alleles, sex-linked alleles. Non-random mating, inbreeding and assortative mating, inbreeding coefficient. Factors that change allelic frequencies.

# MODULE 2 GENETIC VARIATION AND INHERITANCE OF COMPLEX 11 Hrs TRAITS

Testing gene mutations for alleles: complementation test, intragenic complementation Genotypes & phenotypes: Effect of the environment on phenotype development, Penetrance and expressivity, Visible, sterile and lethal mutations, Gene interactions and modifying genes, Pleiotropy.

#### MODULE 3 GENETIC POLYMORPHISMS AMONG POPULATIONS

**11 Hrs** 

Genetic polymorphism, transient and stable and factors responsible for stable polymorphism. DNA markers and populations differences. Application of population genetics. Role of population genetics in genetic counselling. Genetic origin and evolution of human races. Genetic Demography, age and gender specific death and birth rates, intrinsic rate of natural increase. Index of opportunity for natural selection.

#### **MODULE 4 EVOLUTIONARY GENETICS**

11 Hrs

Darwinism, Neo Darwinism and Synthetic Theory. Evolution of Sexual Reproduction. Sex Ratio and Sex Determination. Chromosomal evolution, genome evolution, selfish DNA. Competition Among Levels of Organization. Speciation and Phylogeny. Coalescent Theory. Drift versus selection in population. Kin and group Selection. Cancer as an evolutionary process.

#### **TEXT BOOKS/REFERANCES:**

- 1. Hamilton M.B. (2009). Population Genetics. Wiley-Blackwell, UK.
- 2. Hedrick P.W.(2011). Genetics of Populations. Jones and Bartlett Publishers, Massachusetts.
- 3. Jobling, M., Hollox, E., Hurles, M., Kivisild, T. and Tyler-Smith, C. (2013). Human Evolutionary Genetics. Garland Science.
- 4. Nielsen, R. and Slatkin, M. (2013). An Introduction to Population Genetics: Theory and Applications. Sinauer Associates, Inc.
- 5. Relethford, J.H. (2012). Human Population Genetics. John Wiley & Sons.
- 6. Snusted, D.P., Simmons, M. J. (2010). Principles of Genetics. John Wiley & Sons, New York.
- 7. Knight, J.C. (2009). Human Genetic Diversity –Functional consequences for Health and Disease. Oxford University Press, USA.

| SEN                          | <b>IESTER</b>   |           | V                              | V          |           |                  |       |         |
|------------------------------|-----------------|-----------|--------------------------------|------------|-----------|------------------|-------|---------|
| YEA                          | AR              |           | III                            | III        |           |                  |       |         |
| COL                          | URSE CODE       |           | 20BS3                          | 20BS3571   |           |                  |       |         |
| TIT                          | LE OF THE C     | OURSE     | ESTIMATION OF BIOMOLECULES-LAB |            |           |                  |       |         |
|                              |                 |           | Lectur                         | e Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> |                 |           | Hours                          | Hours      | Hours     | Hours            | Hours |         |
|                              |                 |           | -                              | -          | 4         | -                | -     | 2       |
| Pero                         | quisite Courses | (if any)  |                                |            |           |                  |       |         |
| #                            | Sem/Year        | Course Co | ode Title of the Course        |            |           |                  |       |         |
| -                            | -               | -         | -                              |            |           |                  |       |         |
|                              |                 |           |                                |            |           |                  |       |         |

- To make students learn Qualitative analysis of biomolecules
- To make students learn Quantitative methods of study of biomolecules

| CO<br>No. | Outcomes                                                                                             | Bloom's<br>Taxonomy<br>Level |
|-----------|------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Students will be able to learn the procedures and safety precautions while handling the biomolecules | L2 and L3                    |
| CO2       | Students will be able to learn quantitate biomolecules and estimate using standard graphs            | L3                           |

| List of Laboratory/Practical Experiments activities to be conducted (if any):               |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1. Qualitative analysis of Monosaccharides and disaccharides (Glucose, Fructose, Lactose,   |  |  |  |  |  |  |  |
| Sucrose)                                                                                    |  |  |  |  |  |  |  |
| 2. Estimation of Glucose estimation by Miller's method                                      |  |  |  |  |  |  |  |
| 3. Qualitative Analysis of amino acids (Trypotophan, Tyrosine, Cystiene, Proline, Arginine, |  |  |  |  |  |  |  |
| Histidine)                                                                                  |  |  |  |  |  |  |  |
| 4. Estimation of Protein by Folin - Ciocalteu method/Estimation of aminoacids by Ninhydrin  |  |  |  |  |  |  |  |
| method                                                                                      |  |  |  |  |  |  |  |
| 5. Lipids (Solubility, acrolein test)                                                       |  |  |  |  |  |  |  |
| 6. Determination of Iodine Number of a fat sample                                           |  |  |  |  |  |  |  |
| 7. Estimation of DNA by DPA method                                                          |  |  |  |  |  |  |  |
| 8. Estimation of RNA by Orcinol method                                                      |  |  |  |  |  |  |  |

#### **REFERENCES:**

- 1. Introductory Practical Biochemistry- Sawhney and Singh. Narosa Publishing house 2012, 7<sup>th</sup> edition
- 2. An Introduction to Practical Biochemistry: Plummer D.T, Tata Mc Graw Hill.
- 3. Biochemistry Harper, Lange Publications, 2<sup>nd</sup> edition
- 4. Hamilton M.B. (2009). Population Genetics. Wiley-Blackwell, UK.
- 5. Hedrick P.W.(2011). Genetics of Populations. Jones and Bartlett Publishers, Massachusetts.
- 6. Jobling, M., Hollox, E., Hurles, M., Kivisild, T. and Tyler-Smith, C. (2013). Human Evolutionary Genetics. Garland Science.
- 7. Nielsen, R. and Slatkin, M. (2013). An Introduction to Population Genetics: Theory and Applications. Sinauer Associates, Inc.

| SEN                    | <b>IESTER</b> | V           |                     |           |                  |       |         |
|------------------------|---------------|-------------|---------------------|-----------|------------------|-------|---------|
| YEA                    | AR            | III         |                     |           |                  |       |         |
| COI                    | URSE          | 20BS357     | /3                  |           |                  |       |         |
| COI                    | DE            |             |                     |           |                  |       |         |
| TIT                    | LE OF         | FERME       | NTATION             | TECH      | NIQUES AND       | POPUI | LATION  |
| THE                    | E             | GENET       | ICS-LAB             |           |                  |       |         |
| COU                    | URSE          |             |                     |           |                  |       |         |
|                        |               | Lecture     | Tutorial            | Practical | Seminar/Projects | Total | Credits |
| SCH                    | <b>IEME</b>   | Hours       | Hours               | Hours     | Hours            | Hours |         |
| OF                     |               | -           | -                   | 4         | -                | -     | 2       |
| Inst                   | ruction       |             |                     |           |                  |       |         |
|                        |               |             |                     |           |                  |       |         |
| Perc                   | quisite Cou   | rses (if an | ny)                 |           |                  |       |         |
|                        |               |             |                     |           |                  |       |         |
| # Sem/Year Course Code |               |             | Title of the Course |           |                  |       |         |
| -                      | -             | -           |                     | -         |                  |       |         |
|                        |               |             |                     |           |                  | •     |         |

- To impart basic understanding of principles, and key concepts relevant to industrial biotechnology.
- To familiarize students with downstream processing and production of important microbial products
- To make student understand the forces that have an impact on levels of genetic variations in natural and/or experimental populations for both qualitative and quantitative traits.
- To make the students familiar with different types of DNA markers and the range of tools for their detection to enable advanced studies on molecular population genetics.

| CO<br>No. | Outcomes                                                                                   | Bloom's<br>Taxonomy<br>Level |
|-----------|--------------------------------------------------------------------------------------------|------------------------------|
| CO1       | Students will be aware of the fermentation process,                                        | L2                           |
|           | types of fermentation media and strategies for isolation of Industrially important strains |                              |
| CO2       | The course will enable the student to apply the                                            | L3                           |
|           | knowledge in various aspects of fermentation or                                            |                              |
|           | industrial biotechnology processes.                                                        |                              |
| CO3       | This course will give students exposure towards                                            | L2 and L3                    |
|           | understanding population health and disease                                                |                              |

|     | susceptibility.                                                                                                |    |
|-----|----------------------------------------------------------------------------------------------------------------|----|
| CO4 | This course will be helpful to the students to conceptualize the existence of genetic variation and speciation | L3 |

| List of | f Laboratory/Practical Experiments activities to be conducted (if any):         |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------|--|--|--|--|--|
| 1.      | . Study of Fermenter (Demonstration using video or Industrial Visit)            |  |  |  |  |  |
| 2.      | Isolation of amylase producing microorganisms and production using solid state  |  |  |  |  |  |
|         | fermentation. Estimation of amylase activity.                                   |  |  |  |  |  |
| 3.      | Preparation of wine (Grapes/ Ginger/ Pomegranate). Estimation of alcohol.       |  |  |  |  |  |
| 4.      | Production and estimation of citric acid/ lactic acid                           |  |  |  |  |  |
| 5.      | Immobilization of yeast by calcium alginate gel entrapment and assay for enzyme |  |  |  |  |  |
|         | (Catalase/ Invertase).                                                          |  |  |  |  |  |
| 6.      | Genetic problems on polygenic variance, Heritability.                           |  |  |  |  |  |
| 7.      | Disease-risk prediction in population using Hardy-Weinberg equations.           |  |  |  |  |  |
| 8.      | Study of phylogenetic trees                                                     |  |  |  |  |  |
| 9.      | Study on finger and Palmer dermatoglyphic patterns                              |  |  |  |  |  |
| 10      | Pedigree analysis and construction                                              |  |  |  |  |  |

#### **REFERENCES:**

- 1. Casida L.E.J.R (2015) Industrial Microbiology, New Age International, New Delhi
- 2. Prescott S.C and Dunn C.C (2005) Industrial Microbiology, 4<sup>th</sup> Edition CBS Publishers and Distributors, New Delhi.
- 3. Stanbury PF, Whitakar A and Hall SJ (1999) Principles of Fermentation Technology, 2<sup>nd</sup> Edition Aditya Books (P) Ltd, New Delhi.
- 4. Waites Michael J., Morgan Neil., RockeyJohn S and GrayHigton, Industrial Microbiology- An Introduction, Blackwell Science. Delhi
- 5. WulfCrueger (2016) A Textbook of Industrial Microbiology First CBS Publishers and Distributors Edition.
- K.R. Aneja. Experiments in Microbiology, Plant Pathology and Biotechnology.
- 7. Hamilton M.B. (2009). Population Genetics. Wiley-Blackwell, UK.
- 8. Hedrick P.W.(2011). Genetics of Populations. Jones and Bartlett Publishers, Massachusetts.
- 9. Jobling, M., Hollox, E., Hurles, M., Kivisild, T. and Tyler-Smith, C. (2013). Human Evolutionary Genetics. Garland Science.
- 10. Nielsen, R. and Slatkin, M. (2013). An Introduction to Population Genetics: Theory and Applications. Sinauer Associates, Inc.

| SEMESTER    |     | V        |                                        |           |                  |       |         |
|-------------|-----|----------|----------------------------------------|-----------|------------------|-------|---------|
| YEAR        |     | III      |                                        |           |                  |       |         |
| COURSE COD  | E   | 20AU0003 | 3                                      |           |                  |       |         |
| TITLE OF    | THE | CONSTI   | CONSTITUTION OF INDIA AND HUMAN RIGHTS |           |                  |       |         |
| COURSE      |     |          |                                        |           |                  |       |         |
|             |     | Lecture  | Tutorial                               | Practical | Seminar/Projects | Total | Credits |
| SCHEME      | OF  | Hours    | Hours                                  | Hours     | Hours            | Hours |         |
| Instruction |     | 2        | 0                                      | 0         | 0                | 22    | 0       |
|             |     |          |                                        |           |                  |       |         |

| Perc | Perquisite Courses (if any) |             |                     |  |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |  |
| -    | -                           | -           | -                   |  |  |  |  |

- Define a constitution
- Describe the salient features of the Indian Constitution
- Explain different ways of acquiring Indian Citizenship
- List the Fundamental Rights and Fundamental Duties of Indian citizens
- Describe the Directive Principles of State Policy and their significance

# **COURSE OUTCOMES:**

| O.  | Outcomes                                                                 | Bloom's<br>Taxonomy<br>Level |
|-----|--------------------------------------------------------------------------|------------------------------|
| O1  | Students will appreciate the fundamental law of the land                 | L1                           |
| O2  | Students will be aware of what kind of government the country will have. | L1                           |
| :O3 | Aid in understanding what lays down the rules to govern the country      | L2                           |
| O4  | It also tells about the rights and also the duties of its citizens       | L1                           |

#### **COURSE CONTENT:**

MODULE 1 4Hrs

Framing of the Indian Constitution: Role of the Constituent Assembly. Philosophy of the Constitution: Objectives, resolution, preamble, fundamental Rights and Duties. Human rights and Environmental protection.

MODULE 2 4Hrs

Special Rights created in the Constitution of Dalits, Backward Classes, Women and Children, and religious and linguistic minorities. Directive Principles of State policy: The need to balance fundamental rights with directive principles.

| MODULE 3                                                                                                                                          | 5Hrs |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Union Executive: President, Prime Minister and Council of Ministers; powers and functions, coalition                                              |      |
| Government, problems in their working.                                                                                                            |      |
| Union Legislature: Lok Sabha and Rajya Sabha, powers and functions. Recent trends in their                                                        |      |
| functioning.                                                                                                                                      |      |
|                                                                                                                                                   |      |
| MODULE 4                                                                                                                                          | 4Hrs |
| State Government: Governor, Chief Minister and Council of ministers, Legislature. Centre – State                                                  |      |
| relations: Political, financial, administrative: Recent Trends.                                                                                   |      |
|                                                                                                                                                   |      |
| MODULE 5                                                                                                                                          | 5Hrs |
| Judiciary: Supreme Court, Judicial Review, Writs, Public interest litigations. Enforcing rights through writs. Emergency provisions (Article 356) |      |

# **TEXT BOOK:**

- 1 D.D. Basu Introduction to the Indian Constitution.
- 2 A.S. Narang Indian Constitution, Government and Politics.
- 3 Nani Palkhivala We, the People, UBS Publishers, New Delhi, 1999.
- 4 A.G. Noorani Indian Government and Politics
- 5 J.C. Johari Indian Government and Politics Vol. I & II, Vishal, New Delhi
- **6** Gran Ville Austin The Indian Constitution Corner stone of a Nation, Oxford, New Delhi, 2000.
- 7 M.U. Pylee, Constitutional Government in India.
- **8** K.K. Ghai, Indian Constitution.

| SEMESTER              | V                |          |           |                  |       |         |
|-----------------------|------------------|----------|-----------|------------------|-------|---------|
| YEAR                  | III              |          |           |                  |       |         |
| COURSE CODE 20AU002   |                  | 20       |           |                  |       |         |
| TITLE OF THE COURSE   | KANNADA KALI – I |          |           |                  |       |         |
|                       | Lecture          | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF Instruction | Hours            | Hours    | Hours     | Hours            | Hours |         |
|                       | 2                | 0        | 0         | 0                | -     | 0       |

| Pero | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- To enable students read and write in Kannada
- To make students to communicate in Kannada helping them to interact with local people for their daily needs

| CO<br>No. | Outcomes                                                          | Bloom's<br>Taxonomy<br>Level |
|-----------|-------------------------------------------------------------------|------------------------------|
| CO1       | Students should be able to read, write and communicate in Kannada | L3                           |

| COURSE CONTENT: |  |  |
|-----------------|--|--|
|                 |  |  |

- ALPHABETS AKSHARAMAALE ಅಕ್ಷ ರಮಾಲೆ
- 2. SIGNS OF VOWELS AND CONJUNCT CONSONANTS KAAGMODULEHA MATTHU OTTHAKSHARAGALU ಕಾಗುಣಿತ ಮತ್ತು ಒತ್ತಕ್ಷರಗಳು
- 3. DAILY USING WORDS PART 1 DINANITHYADA PADAGALU BHAAGA – 1 ದಿನನಿತ್ಯದ ಪದಗಳು ಭಾಗ – 1
- 4. WEEKDAY AND MONTH NAMES VAARADA MATTHU THINGALA HESARUGALU ವಾರದ ಮತ್ತು ತಿಂಗಳ ಹೆಸರುಗಳು
- 5. TASTE RUCHI ರುಚಿ
- 6. COLOURS BANNAGALU ಬಣ್ಣಗಳು
- 7. NUMBERS SANKYEGALU ಸಂಖ್ಯೆಗಳು
- 8. DAILY USING WORDS PART 2 DINANITHYADA PADAGALU BHAAGA – 2 ದಿನನಿತ್ಯದ ಪದಗಳು ಭಾಗ – 2
- 9. QUESTION PATTERNS PRASHNEYA VIDHAANAGALU ಪ್ರಶ್ನೆಯ ವಿಧಾನಗಳು
- 10. MEASUREMENTS ALATHEGALU ಅಳತೆಗಳು
- 11. EDUCATION WORDS SHAIKSHANIKA PADAGALU ಶೈಕ್ಷಣಿಕ ಪದಗಳು
- 12. LIQUID ITEMS NEERINAAMSHADA PADAGALU ನೀರಿನಾಂಶದ ಪದಗಳು
- 13. FRUITS HANNUGALU ಹಣ್ಣುಗಳು
- 14. VEGETABLES THARAKAARIGALU ತರಕಾರಿಗಳು

- 15. FOOD ITEMS AAHAARA PADAARTHAGALU ಆಹಾರ ಪದಾರ್ಹಗಳು
- 16. DAILY USING WORDS PART -3 DINANITHYADA PADAGALU BHAAGA -3 ದಿನನಿತ್ಯದ ಪದಗಳು ಭಾಗ –3
- 17. METALS LOHAGALU ಲೋಹಗಳು
- 18. RELATIVES SAMBANDHIKARU ಸಂಬಂಧಿಕರು
- 19. SEASONS AND CLOTHES KAALAGALU MATTHU BATTEGALU ಕಾಲಗಳು ಮತ್ತು ಬಟ್ಟೆಗಳು
- 20. HOUSE AND FURNITURE MANE MATTHU PEETOPAKARANAGALU ಮನೆ ಮತ್ತು ಪೀಠೋಪಕರಣಗಳು
- 21. OPPOSITE WORDS VIRUDDHA PADAGALU ವಿರುದ್ಧ ಪದಗಳು
- 22. VERBS KRIYAA PADAGALU ಕ್ರಿಯಾ ಪದಗಳು
- 23. ANIMALS PRAANIGALU ಪ್ರಾಣಿಗಳು
- 24. INSECTS KRIMIKEETAGALU ಕ್ರಿಮಿಕೀಟಗಳು
- 25. BIRDS PAKSHIGALU ಪಕ್ಷಿಗಳು
- 26. FEELINGS BHAAVANEGALU ಭಾವನೆಗಳು
- 27. TENSES KAALASOOCHAKAGALU ಕಾಲಸೂಚಕಗಳು
- 28. COMMUNICATION WORDS SAMBHAASHANEYA PADAGALU-ಸಂಭಾಷಣೆಯ ಪದಗಳು

| SEMESTER              | V                |          |           |                  |       |         |
|-----------------------|------------------|----------|-----------|------------------|-------|---------|
| YEAR                  | III              |          |           |                  |       |         |
| COURSE CODE           | 20AU00           | 22       |           |                  |       |         |
| TITLE OF THE COURSE   | KANNADA MANASU-I |          |           |                  |       |         |
|                       | Lecture          | Tutorial | Practical | Seminar/Projects | Total | Credits |
| SCHEME OF Instruction | Hours            | Hours    | Hours     | Hours            | Hours |         |
|                       | 2                | 0        | 0         | 0                | -     | 0       |

| Pero | Perquisite Courses (if any) |             |                     |  |  |  |
|------|-----------------------------|-------------|---------------------|--|--|--|
| #    | Sem/Year                    | Course Code | Title of the Course |  |  |  |
| -    | -                           | -           | -                   |  |  |  |

- To equip the native Kannada speaking students with advanced skills in Kannada
- communication and understanding.
- To enrich the students with creative writing.

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                       | Bloom's<br>Taxonomy<br>Level |
|-----------|------------------------------------------------|------------------------------|
| CO1       | Students will have better speaking and writing | L3                           |
|           | communication skills in Kannada                |                              |

#### **COURSE CONTENT:** ಕನ್ನಡ ಪಠ್ಯಕ್ರಮ ಕನ್ನಡ ಭಾಷಾ ವಿಜ್ಞಾನದ ಸ್ವರೂಪಗಳು 2. ಭಾಷಾ ಕಲಕೆಯ ವಿವಿಧ ನೆಲೆಗಳು ವ್ಯವಹಾರಿಕ ಭಾಷೆಯಲ್ಲ ಕನ್ನಡ 3. ಕಂಪ್ಯೂಟರ್ ಕಲಕೆಯಲ್ಲ (ಗಣಕಯಂತ್ರ) ಕನ್ನಡ ಬಳಕೆ 4. ಪತ್ರ ಲೇಖನ 5. ವೈಯಕ್ತಿಕ ಪತ್ರಗಳು 2. ವ್ಯವಹಾರಿಕ ಪತ್ರಗಳು 6. ಪ್ರಬಂಧ ರಚನೆ ಸಾಮಾಜಿಕ ಕ್ಷೇತ್ರ 2. ಶೈಕ್ಷಣಿಕ ಕ್ಷೇತ್ರ ಗಾದೆಗಳ ಬಳಕೆ ಜನಪದದ ಶೈಅ 2. ಅನುಭವದ ಶೈಅ ವಾಕ್ಯ ಸಂಯೋಜನೆ 8. 2. ಮಿಶ್ರವಾಕ್ಯ ಸರಳ ವಾಕ್ಯ ಸಂಯೋಜಿತ ವಾಕ್ಯ \_ ವ್ಯಾಕರಣ ಭಾಗ 9. ಅನುಕರಣವಾಚೀ ಪದಗಳು 2. ವಿರುದ್ಧ ಪದಗಳು, ನುಡಿಗಟ್ಟುಗಳು ವಿದ್ಯರ್ಥಕ ಪದಗಳು 4. ಅರ್ಥ, ಸಮಾನಾರ್ಥ, ನಾನಾರ್ಥ ಪದಗಳು 3. 5. ನಿಷೇದಾರ್ಥಕ ಪದಗಳು 6. ಸಂಖ್ಯಾವಾಚಕ, ನಾಮವಾಚಕಗಳು 7. ವಿಭಕ್ತಿ ಪ್ರತ್ಯಯಗಳು 8. ಕ್ರಿಯಾಪದಗಳು, ಧಾತುರೂಪ ಪದ ವಿಂಗಡಣೆ 10. ದ್ವಿರುಕ್ತಿ, ಜೋಡುನುಡಿ, ಇತ್ಯಾದಿ 9.

- 10. ಸೃಜನಾತ್ಮಕ ಬರವಣಿಗೆ
- ವಿಷಯದ ಆಯ್ಕೆ 2. ಅನಿಸಿಕೆಯ ಭಾಗ
  - ವಿಶ್ಲೇಷಣೆ З.

- 4. ಉಪಸಂಹಾರ
- ವಿಷಯದ ಚರ್ಚೆ, ಪ್ರಬಂಧ ಮಂಡನೆ 11.
- 12. ಸಮೂಹ ಚರ್ಚೆ, ಪಠ್ಯ ಪದ್ಯ ನಾಟಕ ಭಾಗ
- 13. ವಿಷಯ ಸಂಗ್ರಹಣಿ, ವರದಿ, ಲೇಖನ ಕಲೆ
- 14. ಸಂಪರ್ಕ ಮಾಧ್ಯಮಗಳು ಅದರ ಬಳಕೆ
- 15. ಸ್ವತಂತ್ರ ಕಥೆ, ವರ್ಣನೆ, ಪ್ರವಾಸಕಥನ ಮತ್ತು ಅನುಭವಗಳ ನಿರೂಪಣೆ

\*\*\*\*\*

| SEMESTER                     | VI                   |          |           |                  |       |         |
|------------------------------|----------------------|----------|-----------|------------------|-------|---------|
| YEAR                         | III                  |          |           |                  |       |         |
| COURSE CODE                  | 20BS3601             |          |           |                  |       |         |
| TITLE OF THE COURSE          | RESEARCH METHODOLOGY |          |           |                  |       |         |
|                              | Lecture              | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours                | Hours    | Hours     | Hours            | Hours |         |
|                              | 2                    |          | -         | -                | 22    | 2       |

| Perquisite Courses (if any) |          |             |                     |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |
| 1                           | -        | -           | -                   |  |  |
|                             |          |             |                     |  |  |

- 1. Students understand research terminology one that can be used to carry out different approaches to research
- 2. To be aware of the ethical principles of research, challenge and approval processes

#### **COURSE OUTCOMES:**

| CO<br>No. | Outcomes                                                                         | Bloom's<br>Taxonomy<br>Level |
|-----------|----------------------------------------------------------------------------------|------------------------------|
| CO1       | Demonstrate knowledge of research processes (reading, evaluating and developing) | L2                           |
| CO2       | Compare and contrast qualitative and quantitative research                       | L4                           |

#### **COURSE CONTENT:**

| MODULE I | 11Hrs |
|----------|-------|

Meaning, Objectives and Characteristics of research. Research Methods Vs Methodology. Types of research. Descriptive Vs. Analytical, Applied Vs. Fundamental, Quantitative Vs. Qualitative, Conceptual Vs. Empirical. Research process. Criteria of good research. Developing a research plan.

Defining the research problem. Techniques involved in defining the problem Survey of literature. Primary and secondary sources. Reviews, treatise, monographs patents. Identifying gap areas from literature review. Development of working hypothesis.

MODULE II: 11Hrs

Research design and methods - Basic Principle. Features of good design. Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan. Exploration, Description, Diagnosis, and Experimentation. Determining experimental and sample designs.

Sampling design - Steps and types in sampling design. Measurement and scaling techniques. Methods of data collection. Testing of hypotheses. Procedure for hypotheses testing flow diagram for hypotheses testing. Data analysis with Statistical Packages. Correlation and Regression. Important parametric test. Chi-square test. Analysis of variance and Covariance.

| List of Laboratory/Practical Experiments activities to be conducted (if any): |  |  |  |  |
|-------------------------------------------------------------------------------|--|--|--|--|
| 1.NO                                                                          |  |  |  |  |
| 2. <b>NO</b>                                                                  |  |  |  |  |

#### **TEXT BOOKS:**

# **REFERENCES**

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 3. Anderson, T. W., An Introduction to Multivariate Statistical Analysis, Wiley Eastern Pvt., Ltd., New Delhi
- 4. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, EssEss Publications. 2 volumes.
- 5. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 6. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- 7. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 8. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications

| SEMESTER                     | VI       |          |           |                  |       |         |
|------------------------------|----------|----------|-----------|------------------|-------|---------|
| YEAR                         | III      |          |           |                  |       |         |
| COURSE CODE                  | 20BS3602 |          |           |                  |       |         |
| TITLE OF THE COURSE          | PROJECT  |          |           |                  |       |         |
|                              | Lecture  | Tutorial | Practical | Seminar/Projects | Total | Credits |
| <b>SCHEME OF Instruction</b> | Hours    | Hours    | Hours     | Hours            | Hours |         |
|                              | -        | •        | •         | 12               | •     | 6       |

| Perquisite Courses (if any) |          |             |                     |  |  |  |
|-----------------------------|----------|-------------|---------------------|--|--|--|
| #                           | Sem/Year | Course Code | Title of the Course |  |  |  |
| 1                           | -        | -           | -                   |  |  |  |
|                             |          |             |                     |  |  |  |

- 1. Construct a project from Plan, schedule, monitor and control students' own work and to exhibit ideas in discussions and presentations
- 2. Apply tools and techniques to the applied courses taught and to communicate their findings through a written report and poster presentation

| CO<br>No. | Outcomes                                                                                                                                                                          | Bloom's<br>Taxonomy<br>Level |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1       | To provide a postgraduate level knowledge in Microbiology, including understanding, analysis, management, and handling of real life information technology problems in workplace. | L4                           |
| CO2       | To provide graduate education that will prepare students to become thoughtful, productive members of the competing profession and community.                                      | L4                           |
| CO3       | To provide a high-quality post graduate education and training in microbiology which prepares students for productive careers and lifelong learning.                              | L5                           |